化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4490-4501.DOI: 10.11949/0438-1157.20200759
收稿日期:
2020-06-16
修回日期:
2020-07-23
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
魏子栋
作者简介:
李存璞(1986—),男,博士,副教授,基金资助:
Cunpu LI(),Jianchuan WANG,Zidong WEI()
Received:
2020-06-16
Revised:
2020-07-23
Online:
2020-10-05
Published:
2020-10-05
Contact:
Zidong WEI
摘要:
电化学反应器中隔膜材料是将正极和负极在电子通路上隔开但在离子传输通路上保持畅通的特殊材料。作为电化学反应器三个关键材料之一,隔膜材料还需耐强酸/强碱和高电压等环境。围绕电化学反应器中隔膜材料,从分子设计的角度针对材料电化学性能与化学稳定性的调控、电化学装置的介观传质性能的促进和改善等研究思路与进展进行了综述,为相关研究提供性能导向的分子设计参考。
中图分类号:
李存璞, 王建川, 魏子栋. 电化学反应器隔膜材料的分子设计与介尺度策略[J]. 化工学报, 2020, 71(10): 4490-4501.
Cunpu LI, Jianchuan WANG, Zidong WEI. Mesoscopic strategies and molecular design of diaphragm for electrochemical reactors[J]. CIESC Journal, 2020, 71(10): 4490-4501.
68 | Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Applied Energy Materials, 2019, 2(7): 4576-4581. |
69 | Arges C G, Zhang L. Anion exchange membranes evolution toward high hydroxide ion conductivity and alkaline resiliency[J]. ACS Applied Energy Materials, 2018, 1(7): 2991-3012. |
1 | Zhou G, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4): 641-647. |
2 | Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface[J]. Energy & Environmental Science, 2014, 7(10): 3381-3390. |
3 | Chung S H, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(33): 5299-5306. |
4 | Gu X, Tong C, Lai C, et al. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(32): 16670-16678. |
5 | Jin Z, Xie K, Hong X, et al. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells[J]. Journal of Power Sources, 2012, 218: 163-167. |
6 | Hao Z, Yuan L, Li Z, et al. High performance lithium-sulfur batteries with a facile and effective dual functional separator[J]. Electrochimica Acta, 2016, 200: 197-203. |
7 | Luo X, Lu X, Zhou G, et al. Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42198-42206. |
8 | Peng Q, Yu F, Wang W, et al. Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery[J]. Electrochimica Acta, 2019, 299: 749-755. |
9 | Yu X, Wu H, Koo J H, et al. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(1): 1902872. |
10 | Zhang Z, Lai Y, Zhang Z, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61. |
70 | Chen J, Li C, Wang J, et al. A general strategy to enhance the alkaline stability of anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(13): 6318-6327. |
11 | Zhang J, Rao Q, Jin B, et al. Cerium oxide embedded bilayer separator enabling fast polysulfide conversion for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388: 124120. |
12 | Shao H, Wang W, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. Journal of Power Sources, 2018, 378: 537-545. |
13 | Song X, Chen G, Wang S, et al. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26274-26282. |
14 | Hong X J, Song C L, Yang Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries[J]. ACS Nano, 2019, 13(2): 1923-1931. |
15 | Cai W, Li G, Zhang K, et al. Conductive nanocrystalline niobium carbide as high‐efficiency polysulfides tamer for lithium‐sulfur batteries[J]. Advanced Functional Materials, 2018, 28(2): 1704865. |
16 | Ghazi Z A, He X, Khattak A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(21): 1606817. |
17 | Wang P, Bao J, Lv K, et al. Rational design of a gel-polymer-inorganic separator with uniform lithium-ion deposition for highly stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35788-35795. |
18 | Hwang J Y, Kim H M, Lee S K, et al. High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon‐paper interlayer[J]. Advanced Energy Materials, 2016, 6(1): 1501480. |
19 | Dong Q, Shen R, Li C, et al. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries[J]. Small, 2018, 14(52): e1804277. |
20 | Sun J, Sun Y, Pasta M, et al. Entrapment of polysulfides by a black‐phosphorus‐modified separator for lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(44): 9797-9803. |
21 | Song R, Fang R, Wen L, et al. A trilayer separator with dual function for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 301: 179-186. |
22 | Dong Q, Wang T, Gan R, et al. Balancing the seesaw: investigation of a separator to grasp polysulfides with diatomic chemisorption[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20596-20604. |
23 | Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191. |
24 | Wang Y J, Qiao J, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chemical Society Reviews, 2013, 42(13): 5768-5787. |
25 | Yang Y, Wang J, Zheng J, et al. A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell[J]. Journal of Membrane Science, 2014, 467: 48-55. |
26 | Dai P, Mo Z H, Xu R W, et al. Cross-linked quaternized poly(styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane: synthesis, characterization and properties[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20329-20341. |
27 | Dong X, Lv D, Zheng J, et al. Pyrrolidinium-functionalized poly(arylene ether sulfone)s for anion exchange membranes: using densely concentrated ionic groups and block design to improve membrane performance[J]. Journal of Membrane Science, 2017, 535: 301-311. |
28 | Hao J, Gao X, Jiang Y, et al. Crosslinked high-performance anion exchange membranes based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)[J]. Journal of Membrane Science, 2018, 551: 66-75. |
29 | Strasser D J, Graziano B J, Knauss D M. Base stable poly(diallylpiperidinium hydroxide) multiblock copolymers for anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(20): 9627-9640. |
30 | Wang Z, Li Z, Chen N, et al. Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly (styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications[J]. Journal of Membrane Science, 2018, 564: 492-500. |
31 | Zhang K, Gong S, Zhao B, et al. Bent-twisted block copolymer anion exchange membrane with improved conductivity[J]. Journal of Membrane Science, 2018, 550: 59-71. |
32 | Zhang X, Chen P, Shi Q, et al. Block poly(arylene ether sulfone) copolymers bearing quaterinized aromatic pendants: synthesis, property and stability[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26320-26332. |
33 | Guo D, Lai A N, Lin C X, et al. Imidazolium-functionalized poly(arylene ether sulfone) anion-exchange membranes densely grafted with flexible side chains for fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25279-25288. |
34 | Han J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332. |
35 | Jannasch P, Weiber E A. Configuring anion-exchange membranes for high conductivity and alkaline stability by using cationic polymers with tailored side chains[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1108-1118. |
36 | Lai A N, Zhuo Y Z, Lin C X, et al. Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells[J]. Journal of Membrane Science, 2016, 502: 94-105. |
37 | Pan J, Han J, Zhu L, et al. Cationic side-chain attachment to poly(phenylene oxide) backbones for chemically stable and conductive anion exchange membranes[J]. Chemistry of Materials, 2017, 29(12): 5321-5330. |
38 | Zeng L, Zhao T S. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains[J]. Journal of Power Sources, 2016, 303: 354-362. |
39 | Zhang M, Shan C, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23321-23330. |
40 | Wang L, Bellini M, Miller H A, et al. A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W/cm2 at 80℃[J]. Journal of Materials Chemistry A, 2018, 6(31): 15404-15412. |
41 | Pan J, Chen C, Li Y, et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy & Environmental Science, 2014, 7(1): 354-360. |
42 | Cheng X, Wang J, Liao Y, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782. |
43 | Wang Y, Wan H, Wang D, et al. Preparation and characterization of a semi-interpenetrating network alkaline anion exchange membrane[J]. Fibers and Polymers, 2018, 19(1): 11-21. |
44 | Xue J, Liu L, Liao J, et al. Semi-interpenetrating polymer networks by azide-alkyne cycloaddition as novel anion exchange membranes[J]. Journal of Materials Chemistry A, 2018, 6(24): 11317-11326. |
45 | Chen C, Chen B, Hong R. Preparation and properties of alkaline anion exchange membrane with semi‐interpenetrating polymer networks based on poly (vinylidene fluoride-co-hexafluoropropylene)[J]. Journal of Applied Polymer Science, 2018, 135(5): 45775. |
46 | Zhang K, Mcdonald M B, Genina I E A, et al. A highly conductive and mechanically robust OH– conducting membrane for alkaline water electrolysis[J]. Chemistry of Materials, 2018, 30(18): 6420-6430. |
47 | Pan J, Zhu L, Han J, et al. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks[J]. Chemistry of Materials, 2015, 27(19): 6689-6698. |
48 | Guo D, Zhuo Y Z, Lai A N, et al. Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells[J]. Journal of Membrane Science, 2016, 518: 295-304. |
49 |
Zeng L, He Q, Liao Y, et al. Anion exchange membrane based on interpenetrating polymer network with ultrahigh ion conductivity and excellent stability for alkaline fuel cell[J]. Research, 2020, DOI: 10.34133/2020/4794706.
DOI URL |
50 | Zhu L, Pan J, Wang Y, et al. Multication side chain anion exchange membranes[J]. Macromolecules, 2016, 49(3): 815-824. |
51 | Zhu L, Yu X, Hickner M A. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes[J]. Journal of Power Sources, 2018, 375: 433-441. |
52 | Han J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332. |
53 | Yang Y, Fu N, Dong Q, et al. Self‐aggregation to construct hydroxide highways in anion exchange membranes[J]. Advanced Materials Interfaces, 2020, 7(14): 1902143. |
54 | Cheng X, Wang J, Liao Y, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782. |
55 | Hao J, Jiang Y, Gao X, et al. Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018, 548: 1-10. |
56 | Chen D, Hickner M A. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s[J]. Macromolecules, 2013, 46(23): 9270-9278. |
57 | Gong X, He G, Yan X, et al. Electrospun nanofiber enhanced imidazolium-functionalized polysulfone composite anion exchange membranes[J]. RSC Advances, 2015, 5(115): 95118-95125. |
58 | Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes[J]. ACS Macro Letters, 2015, 4(8): 814-818. |
59 | Wang K, Gao L, Liu J, et al. Comb-shaped ether-free poly (biphenyl indole) based alkaline membrane[J]. Journal of Membrane Science, 2019, 588: 117216. |
60 | Olsson J S, Pham T H, Jannasch P. Tuning poly (arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking[J]. Journal of Membrane Science, 2019, 578: 183-195. |
61 | Hao J, Jiang Y, Gao X, et al. Functionalization of polybenzimidazole-crosslinked poly (vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018, 548: 1-10. |
62 | Chu X, Liu L, Huang Y, et al. Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: synthesis and durability[J]. Journal of Membrane Science, 2019, 578: 239-250. |
63 | Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Applied Energy Materials, 2019, 2(7): 4576-4581. |
64 | Wang J, Zhao Y, Setzler B P, et al. Poly (aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398. |
65 | Shukla G, Shahi V K. Poly (arylene ether ketone) copolymer grafted with amine groups containing a long alkyl chain by chloroacetylation for improved alkaline stability and conductivity of anion exchange membrane[J]. ACS Applied Energy Materials, 2018, 1(3): 1175-1182. |
66 | Li S, Zhu X, Liu D, et al. A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC[J]. Journal of Membrane Science, 2018, 546: 15-21. |
67 | Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability[J]. Chemical Communications, 2014, 50(31): 4092-4095. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[5] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[6] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[7] | 焦巡, 童成, 李存璞, 魏子栋. 锂硫电池的动力学调控策略[J]. 化工学报, 2023, 74(1): 170-191. |
[8] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[9] | 方辉煌, 程金星, 罗宇, 陈崇启, 周晨, 江莉龙. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814. |
[10] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[11] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[12] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
[13] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[14] | 艾承燚, 乔金硕, 王振华, 孙旺, 孙克宁. 原位析出纳米合金的PrBaFe2O6-δ 基阳极构筑及其在固体碳燃料电池中的应用研究[J]. 化工学报, 2022, 73(8): 3708-3719. |
[15] | 彭琳, 牛明鑫, 白羽, 孙克宁. 中空硫球-MoS2/rGO材料的制备及其在锂硫电池中的应用[J]. 化工学报, 2022, 73(8): 3688-3698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||