化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1772-1780.doi: 10.11949/0438-1157.20220021

• 材料化学工程与纳米技术 • 上一篇    下一篇

锆基金属有机骨架材料用于氨吸附性能的研究

王毅1(),熊启钊1,陈杨1,2(),杨江峰1,2,李立博1,2,3,李晋平1,2,3   

  1. 1.太原理工大学化学化工学院,山西 太原 030024
    2.气体能源高效清洁利用山西省重点实验室,山西 太原 030024
    3.太原理工大学煤科学与技术重点实验室,山西 太原 030024
  • 收稿日期:2022-01-06 修回日期:2022-02-21 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 陈杨 E-mail:manbayi329@163.com;chenyangtyut@163.com
  • 作者简介:王毅(1997—),男,硕士研究生, manbayi329@163.com
  • 基金资助:
    国家自然科学基金项目(22090062);山西省回国留学人员科研资助项目(2021-053)

Research on Zr-based metal-organic frameworks for NH3 adsorption

Yi WANG1(),Qizhao XIONG1,Yang CHEN1,2(),Jiangfeng YANG1,2,Libo LI1,2,3,Jinping LI1,2,3   

  1. 1.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, China
    3.Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2022-01-06 Revised:2022-02-21 Published:2022-04-05 Online:2022-04-25
  • Contact: Yang CHEN E-mail:manbayi329@163.com;chenyangtyut@163.com

摘要:

近年来,金属有机骨架材料(MOF)在气体吸附和储存领域得到了迅速发展,但由于结构的不稳定性,其在强腐蚀性气体氨(NH3)的吸附方面并不令人满意。考虑到NH3是唯一的无碳排放的氢能源载体,开发高效的储氨技术来载氢是有效的降低二氧化碳排放的手段。利用MOF材料具有的高比表面积和结构多样的特性,在NH3的吸附和储存方面具有广阔的应用前景。而NH3具有孤对电子,会攻击金属与配体之间形成的配位键,使MOF材料的结构遭到破坏。锆基金属有机骨架材料是公认结构稳定性较好的MOF材料,但其是否能胜任干燥NH3及含水条件下的稳定性仍未深入考察,由此需探究该系列材料在NH3吸附领域的适用性。在此,通过实验和计算模拟研究锆基系列的金属有机骨架UiO-66、NU-1000、MOF-801和 MOF-808的结构特征、稳定性和NH3吸附性能。结果表明,UiO-66、NU-1000和MOF-808在纯NH3环境下的稳定性较好,并且显示出高吸附量且可循环的氨吸附性能(13.04、6.38、9.65 mmol/g)。受限于水和氨对结构的协同破坏作用,NU-1000和MOF-801的结构均不能维持,而UiO-66和MOF-808的结构非常稳定,无论在干燥NH3环境及含水NH3环境下均能胜任而应用于NH3吸附和储存。

关键词: 金属有机骨架材料, 锆基系列, 氨吸附, 稳定性, 循环性

Abstract:

Metal-organic framework (MOF) has been developed rapidly in the fields of gas adsorption and storage in recent years, but they are unsatisfactory in the adsorption of strong corrosive gas ammonia (NH3) due to structural instability. Considering NH3 is the only carbon-free chemical energy carrier, developing efficient ammonia storage technology to carry hydrogen is an effective technology to reduce carbon dioxide emissions. MOFs exhibit great prospects for adsorption and storage of NH3 due to their high surface area and structural diversity advantages. NH3 has a lone pair of electrons, which will attack the coordination bond formed between the metal ion and the ligand, resulting in the structural destruction of MOFs. Herein, the structural characteristics, stability, and NH3 adsorption properties of Zr-based metal-organic frameworks, including UiO-66, NU-1000, MOF-801, and MOF-808, were investigated by experiments and computational simulations. The results showed that UiO-66 has excellent structural stability in NH3 adsorption with a high uptake of 13.04, 6.38 and 9.65 mmol/g. However, Due to the limited stability and low adsorption capacity, NU-1000 and MOF-801 are not suitable for ammonia adsorption under the humid environment. Conversely, the structure of UiO-66 and MOF-808 is very stable, which can be used in NH3 adsorption and storage applications both in dry and humid NH3 environments.

Key words: metal-organic framework, Zr-based series, NH3 adsorption, stability, cycling ability

中图分类号: 

  • TQ 536.9

图1

UiO-66、MOF-801、MOF-808的孔笼结构和 NU-1000的直通道结构"

图2

合成的 UiO-66、NU-1000、MOF-801和MOF-808的形貌及其NH3/H2O共吸附之后的形貌"

图3

UiO-66、NU-1000、MOF-801和MOF-808的PXRD谱图"

图4

UiO-66、NU-1000、MOF-801和MOF-808的TGA曲线"

图5

UiO-66、NU-1000、MOF-801和MOF-808的N2 (77 K)吸脱附等温线"

图6

25℃下UiO-66、NU-1000、MOF-801和MOF-808的NH3吸脱附循环曲线"

表1

孔结构及吸附性能"

材料BET比表面积/(m2/g)孔径/?孔体积/(cm3/g)298 K NH3吸附量/(mmol/g)
UiO-669168.4,7.40.4913.04
NU-10001567311.46.38
MOF-8018737.4,5.6,4.80.459.85
MOF-80815124.8,18.40.849.65

图7

在1 bar、25℃下使用 GCMC 计算的UiO-66、NU-1000、MOF-801和MOF-808中NH3分子(红点)的吸附分布"

1 Li K, Andersen S Z, Statt M J, et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen[J]. Science, 2021, 374(6575): 1593-1597.
2 Zhang Y Y, Zhang X, Chen Z J, et al. A flexible interpenetrated zirconium-based metal-organic framework with high affinity toward ammonia[J]. ChemSusChem, 2020, 13(7): 1710-1714.
3 MacFarlane D R, Choi J, Suryanto B H, et al. Liquefied sunshine: transforming renewables into fertilizers and energy carriers with electromaterials[J]. Advanced Materials, 2020, 32(18): e1904804.
4 MacFarlane D R, Cherepanov P V, Choi J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205.
5 Guo J P, Chen P. Catalyst: NH3 as an energy carrier[J]. Chem, 2017, 3(5): 709-712.
6 Chen Y, Zhang F, Wang Y, et al. Recyclable ammonia uptake of a MIL series of metal-organic frameworks with high structural stability[J]. Microporous and Mesoporous Materials, 2018, 258: 170-177.
7 Zhao Y, Setzler B P, Wang J, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484
8 王均利, 曾少娟, 陈能, 等. 氨气吸附材料的研究进展[J]. 过程工程学报, 2019, 19(1): 14-24.
Wang J L, Zeng S J, Chen N, et al. Research progress of ammonia adsorption materials[J]. The Chinese Journal of Process Engineering, 2019, 19(1): 14-24.
9 金青青, 梁晓怿, 张佳楠, 等. 改性球形活性炭对氨气吸附性能的研究[J]. 无机盐工业, 2021, 53(4): 61-66.
Jin Q Q, Liang X Y, Zhang J N, et al. Study on adsorption performance of modified spherical activated carbon for ammonia[J]. Inorganic Chemicals Industry, 2021, 53(4): 61-66.
10 杨江峰, 欧阳坤, 陈杨, 等. 柔性MOFs材料Cu(BDC)的氨气吸附及可逆转化性能[J]. 化工学报, 2017, 68(1): 418-423.
Yang J F, Ouyang K, Chen Y, et al. NH3 adsorption on flexy reversible metal-organic frameworks Cu(BDC)[J]. CIESC Journal, 2017, 68(1): 418-423.
11 Sharonov V E, Aristov Y I. Ammonia adsorption by MgCl2, CaCl2 and BaCl2 confined to porous alumina: the fixed bed adsorber[J]. Reaction Kinetics and Catalysis Letters, 2005, 85(1): 183-188.
12 Helminen J, Helenius J, Paatero E, et al. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K[J]. Journal of Chemical & Engineering Data, 2001, 46(2): 391-399.
13 Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428.
14 Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? [J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021.
15 Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504.
16 Chen Y, Xiong Q Z, Wang Y, et al. Boosting molecular recognition of acetylene in UiO-66 framework through pore environment functionalization[J]. Chemical Engineering Science, 2021, 237:116572
17 Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674.
18 Zhou H C J, Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418.
19 Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):1230444.
20 Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932.
21 Cui Y J, Yue Y F, Qian G D, et al. Luminescent functional metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 1126-1162.
22 Li L B, Lin R-B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446.
23 Travlou N A, Singh K, Rodríguez-Castellón E, et al. Cu-BTC MOF-graphene-based hybrid materials as low concentration ammonia sensors[J]. Journal of Materials Chemistry A, 2015, 3(21): 11417-11429.
24 Britt D, Tranchemontagne D, Yaghi O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11623-11627.
25 Doonan C J, Tranchemontagne D J, Glover T G, et al. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2(3): 235-238.
26 Glover T G, Peterson G W, Schindler B J, et al. MOF-74 building unit has a direct impact on toxic gas adsorption[J]. Chemical Engineering Science, 2011, 66(2): 163-170.
27 Petit C, Bandosz T J. Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions[J]. Advanced Functional Materials, 2010, 20(1): 111-118.
28 Petit C, Mendoza B, Bandosz T J. Reactive adsorption of ammonia on Cu-based MOF/graphene composites[J]. Langmuir, 2010, 26(19): 15302-15309.
29 Petit C, Bandosz T J. Synthesis, characterization, and ammonia adsorption properties of mesoporous metal–organic framework (MIL(Fe))-graphite oxide composites: exploring the limits of materials fabrication[J]. Advanced Functional Materials, 2011, 21(11): 2108-2117.
30 Bai Y, Dou Y B, Xie L H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367.
31 Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
32 Deria P, Mondloch J E, Tylianakis E, et al. Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies[J]. Journal of the American Chemical Society, 2013, 135(45): 16801-16804.
33 Furukawa H, Gándara F, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381.
34 Chen Y, Yang C Y, Wang X Q, et al. Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8[J]. Chemical Engineering Journal, 2017, 313: 179-186.
35 Gelb L D, Gubbins K E. Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer- Emmett-Teller analysis method[J]. Langmuir, 1998, 14(8): 2097-2111.
36 Chen Y, Wang Y, Yang C Y, et al. Antenna-protected metal-organic squares for water/ammonia uptake with excellent stability and regenerability[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5082-5089.
37 Liu Y, Liu J, Lin Y S, et al. Effects of water vapor and trace gas impurities in flue gas on CO2/N2 separation using ZIF-68[J]. The Journal of Physical Chemistry C, 2014, 118(13): 6744-6751.
38 Moghadam P Z, Ghosh P, Snurr R Q. Understanding the effects of preadsorbed perfluoroalkanes on the adsorption of water and ammonia in MOFs[J]. The Journal of Physical Chemistry C, 2015, 119(6): 3163-3170.
39 Nijem N, Fürsich K, Bluhm H, et al. Ammonia adsorption and co-adsorption with water in HKUST-1: spectroscopic evidence for cooperative interactions[J]. The Journal of Physical Chemistry C, 2015, 119(44): 24781-24788.
40 Huang C C, Li H S, Chen C H. Effect of surface acidic oxides of activated carbon on adsorption of ammonia[J]. Journal of Hazardous Materials, 2008, 159(2/3): 523-527.
41 Saha D, Deng S G. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177[J]. Journal of Colloid and Interface Science, 2010, 348(2): 615-620.
42 Kajiwara T, Higuchi M, Watanabe D, et al. A systematic study on the stability of porous coordination polymers against ammonia[J]. Chemistry-A European Journal, 2014, 20(47): 15611-15617.
43 Petit C, Huang L L, Jagiello J, et al. Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites[J]. Langmuir, 2011, 27(21): 13043-13051.
44 Rieth A J, Tulchinsky Y, Dincă M. High and reversible ammonia uptake in mesoporous azolate metal-organic frameworks with open Mn, Co, and Ni sites[J]. Journal of the American Chemical Society, 2016, 138(30): 9401-9404.
45 Han X, Lu W P, Chen Y L, et al. High ammonia adsorption in mfm-300 materials: dynamics and charge transfer in host-guest binding[J]. Journal of the American Chemical Society, 2021, 143(8): 3153-3161.
[1] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[2] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[3] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[4] 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
[5] 任玉鑫, 徐润峰, 王婉颖, 陈鹏忠, 彭孝军. 彩色光刻胶用蒽醌染料的合成及稳定性研究[J]. 化工学报, 2022, 73(5): 2251-2261.
[6] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[7] 周梦雅, 周魁斌, 王朝, 黄梦源, 王一凡, 蒋军成. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971.
[8] 全翠, 张广涛, 许毓, 高宁博. 污泥热解残渣中重金属形态分布的研究进展[J]. 化工学报, 2022, 73(1): 134-143.
[9] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[10] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[11] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[12] 徐子昂, 万磊, 刘凯, 王保国. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906.
[13] 段凌暄, 姚光晓, 江亮, 王世珍. 耐有机溶剂氨基酸脱氢酶基因挖掘与非天然氨基酸的非水相合成[J]. 化工学报, 2021, 72(7): 3757-3767.
[14] 蔡中杰, 田盼, 黄忠亮, 黄猛, 黄加乐, 詹国武, 李清彪. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679.
[15] 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!