化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2573-2588.doi: 10.11949/0438-1157.20220465
Weibin SHI1,2(),Shanshan LONG2,Xiaogang YANG2(
),Xinyue CAI2
摘要:
在以鼓泡塔为代表的气液鼓泡流动中,存在着气泡诱导湍流(BIT)和剪切湍流两种湍流机制,并且二者在不同的时间、空间范围内既相互竞争又共同作用。受制于BIT动能能谱的形式和特性不够完整清晰,过去的研究中关于BIT如何对气泡破碎聚并、相间作用力、相间传热传质等相间相互作用过程产生影响的结论比较模糊。因此,本文在具有波数κ-3特性的BIT能谱的基础上,提出了在不同工况下考虑BIT与剪切湍流共同作用的研究思路。研究结果表明,考虑两种湍流机制的气泡破碎模型和湍流相间扩散模型对BIT在整体或局部占据不同程度主导地位的情况,都能很好地捕捉气液鼓泡流动的动力学特性,为进一步准确揭示气液相间传质过程的内在机理提供了基础。
中图分类号:
1 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
2 | Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. |
3 | Andersson R, Andersson B. Modeling the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6): 2031-2038. |
4 | Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20): 4629-4637. |
5 | Han L C, Fu J, Li M, et al. A theoretical unsteady-state model for kL of bubbles based on the framework of wide energy spectrum[J]. AIChE Journal, 2016, 62(4): 1007-1022. |
6 | Zhao H, Ge W. A theoretical bubble breakup model for slurry beds or three-phase fluidized beds under high pressure[J]. Chemical Engineering Science, 2007, 62(1/2): 109-115. |
7 | Liao Y X, Rzehak R, Lucas D, et al. Baseline closure model for dispersed bubbly flow: bubble coalescence and breakup[J]. Chemical Engineering Science, 2015, 122: 336-349. |
8 | Zhang X B, Yan W C, Luo Z H. Numerical simulation of local bubble size distribution in bubble columns operated at heterogeneous regime[J]. Chemical Engineering Science, 2021, 231: 116266. |
9 | Risso F, Roig V, Amoura Z, et al. Wake attenuation in large Reynolds number dispersed two-phase flows[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366(1873): 2177-2190. |
10 | Mercado J M, Gómez D C, van Gils D, et al. On bubble clustering and energy spectra in pseudo-turbulence[J]. Journal of Fluid Mechanics, 2010, 650: 287-306. |
11 | Riboux G, Risso F, Legendre D. Experimental characterization of the agitation generated by bubbles rising at high Reynolds number[J]. Journal of Fluid Mechanics, 2010, 643: 509-539. |
12 | Mendez-Diaz S, Serrano-García J C, Zenit R, et al. Power spectral distributions of pseudo-turbulent bubbly flows[J]. Physics of Fluids, 2013, 25(4): 043303. |
13 | Prakash V N, Martínez Mercado J, van Wijngaarden L, et al. Energy spectra in turbulent bubbly flows[J]. Journal of Fluid Mechanics, 2016, 791: 174-190. |
14 | Lance M, Bataille J. Turbulence in the liquid phase of a uniform bubbly air-water flow[J]. Journal of Fluid Mechanics, 1991, 222: 95. |
15 | Roghair I, Mercado J M, van Sint Annaland M, et al. Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments[J]. International Journal of Multiphase Flow, 2011, 37(9): 1093-1098. |
16 | Riboux G, Legendre D, Risso F. A model of bubble-induced turbulence based on large-scale wake interactions[J]. Journal of Fluid Mechanics, 2013, 719: 362-387. |
17 | Sommerfeld M, Muniz M, Reichardt T. On the importance of modelling bubble dynamics for point-mass numerical calculations of bubble columns[J]. Journal of Chemical Engineering of Japan, 2018, 51(4): 301-317. |
18 | Laviéville J, Mérigoux N, Guingo M, et al. A generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE_CFD[J]. Nuclear Engineering and Design, 2017, 312: 284-293. |
19 | de Bertodano M A L. Two fluid model for two-phase turbulent jets[J]. Nuclear Engineering and Design, 1998, 179(1): 65-74. |
20 | Drew D. A turbulent dispersion model for particles or bubbles[J]. Journal of Engineering Mathematics, 2001, 41: 259-274. |
21 | Lucas D, Krepper E, Prasser H M. Prediction of radial gas profiles in vertical pipe flow on the basis of bubble size distribution[J]. International Journal of Thermal Sciences, 2001, 40(3): 217-225. |
22 | Wang T F, Wang J F. Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2007, 62(24): 7107-7118. |
23 | Krishna R, van Baten J M. Mass transfer in bubble columns[J]. Catalysis Today, 2003, 79/80: 67-75. |
24 | Lamont J C, Scott D S. An eddy cell model of mass transfer into the surface of a turbulent liquid[J]. AIChE Journal, 1970, 16(4): 513-519. |
25 | Han L C, Luo H A, Liu Y J, et al. A multi-scale theoretical model for gas-liquid interface mass transfer based on the wide spectrum eddy contact concept[J]. AIChE Journal, 2011, 57(4): 886-896. |
26 | Parekh J, Rzehak R. Euler-Euler multiphase CFD-simulation with full Reynolds stress model and anisotropic bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2018, 99: 231-245. |
27 | de Bertodano M L, Lee S J, Lahey R T, et al. The prediction of two-phase turbulence and phase distribution phenomena using a Reynolds stress model[J]. Journal of Fluids Engineering, 1990, 112(1): 107-113. |
28 | Shi W B, Yang X G, Sommerfeld M, et al. Modelling of mass transfer for gas-liquid two-phase flow in bubble column reactor with a bubble breakage model considering bubble-induced turbulence[J]. Chemical Engineering Journal, 2019, 371: 470-485. |
29 | Shi W B, Yang X G, Sommerfeld M, et al. A modified bubble breakage and coalescence model accounting the effect of bubble-induced turbulence for CFD-PBM modelling of bubble column bubbly flows[J]. Flow, Turbulence and Combustion, 2020, 105(4): 1197-1229. |
30 | Rzehak R, Krepper E. CFD modeling of bubble-induced turbulence[J]. International Journal of Multiphase Flow, 2013, 55: 138-155. |
31 | Rzehak R, Krepper E. Closure models for turbulent bubbly flows: a CFD study[J]. Nuclear Engineering and Design, 2013, 265: 701-711. |
32 | Long S S, Yang J, Huang X B, et al. Large-eddy simulation of gas-liquid two-phase flow in a bubble column reactor using a modified sub-grid scale model with the consideration of bubble-eddy interaction[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120240. |
33 | Clift R, Grace J R, Weber M E. Bubbles, Drops, and Particles [M]. New York: Academic Press, 1978. |
34 | Tomiyama A. Struggle with computational bubble dynamics [J]. New York: Multiphase Science and Technology, 1998, 10(4): 369-405. |
35 | Luo H. Coalescence, breakup and liuqid circulation in bubble column reactors [D]. Trondheim, Norway: Norwegian Institute of Technology, 1993. |
36 | Gemello L, Plais C, Augier F, et al. Hydrodynamics and bubble size in bubble columns: effects of contaminants and spargers[J]. Chemical Engineering Science, 2018, 184: 93-102. |
37 | Gemello L, Plais C, Augier F, et al. Population balance modelling of bubble columns under the heterogeneous flow regime[J]. Chemical Engineering Journal, 2019, 372: 590-604. |
38 | Guan X P, Yang N. Bubble properties measurement in bubble columns: from homogeneous to heterogeneous regime[J]. Chemical Engineering Research and Design, 2017, 127: 103-112. |
39 | Burns A D, Frank T, Hamill I, et al. The favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]// 5th International Conference on Multiphase Flow, ICMF' 04. Yokohama, Japan: ICMF, 2004. |
40 | Chen P, Duduković M P, Sanyal J. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup[J]. AIChE Journal, 2005, 51(3): 696-712. |
41 | Chen P, Sanyal J, Duduković M P. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4): 1085-1101. |
42 | Zhang X B, Yan W C, Luo Z H. CFD-PBM simulation of bubble columns: sensitivity analysis of the nondrag forces[J]. Industrial & Engineering Chemistry Research, 2020, 59(41): 18674-18682. |
43 | Shi W B, Li G, Yang J, et al. CFD-PBM modelling of gas-liquid two-phase flow in bubble column reactors with an improved breakup kernel accounting for bubble shape variations[C]// Proceedings of the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2017). Portoroz, Slovenia: HEFAT, 2017. |
44 | Shi W B, Yang J, Li G, et al. Computational fluid dynamics-population balance modeling of gas-liquid two-phase flow in bubble column reactors with an improved breakup kernel accounting for bubble shape variations[J]. Heat Transfer Engineering, 2020, 41(15/16): 1414-1430. |
45 | Pope S B. Turbulent Flows [M]. Cambridge: Cambridge University Press, 2000. |
46 | Terasaka K, Hullmann D, Schumpe A. Mass transfer in bubble columns studied with an oxygen optode[J]. Chemical Engineering Science, 1998, 53(17): 3181-3184. |
47 | Zhang H H, Guo K Y, Wang Y L, et al. Numerical simulations of the effect of liquid viscosity on gas-liquid mass transfer of a bubble column with a CFD-PBM coupled model[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120229. |
[1] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[2] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[3] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[4] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[5] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[6] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[7] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[8] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[9] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
[10] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[11] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[12] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[13] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[14] | 项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558. |
[15] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
|