化工学报 ›› 2023, Vol. 74 ›› Issue (12): 4934-4944.DOI: 10.11949/0438-1157.20230978
孔德齐1(), 张莹莹2, 武文玲1, 马军2, 宋振兴2, 张东辉1(
), 张彦军2(
)
收稿日期:
2023-09-21
修回日期:
2023-12-04
出版日期:
2023-12-25
发布日期:
2024-02-19
通讯作者:
张东辉,张彦军
作者简介:
孔德齐(1999—),男,硕士研究生,kongdeqi@tju.edu.cn
基金资助:
Deqi KONG1(), Yingying ZHANG2, Wenling WU1, Jun MA2, Zhenxing SONG2, Donghui ZHANG1(
), Yanjun ZHANG2(
)
Received:
2023-09-21
Revised:
2023-12-04
Online:
2023-12-25
Published:
2024-02-19
Contact:
Donghui ZHANG, Yanjun ZHANG
摘要:
采用13X分子筛作为吸附剂,设计了一种六塔变压吸附制氧工艺,可用于中型医用制氧机。通过静态容积法测定了氮氧气体在13X分子筛上的吸附等温线,建立了六塔变压吸附工艺的数学模型,包括吸附床模型和辅助设备的数学模型。利用Aspen Adsorption软件对工艺进行了数值模拟,分析了塔内的压力、温度和吸附相浓度分布。模拟结果表明,在吸附压力6 bar(1 bar=0.1 MPa)、步骤时长8 s、产品流量6 m3·h-1的条件下,O2产品纯度达93.83%,回收率46.85%,生产能力3.42×10-2 m3·h-1·kg-1。相较于已有的两塔和四塔工艺,该工艺的回收率有所提高。探究了步骤时长、吸附压力和产品流量对氧气浓度、回收率和生产能力的影响。在4.5~7.5 m3·h-1的产品流量范围内,该工艺均可以制得90%以上纯度的氧气,可应用于氧气纯度需求不同的场景。
中图分类号:
孔德齐, 张莹莹, 武文玲, 马军, 宋振兴, 张东辉, 张彦军. 六塔变压吸附制氧工艺的模拟与分析[J]. 化工学报, 2023, 74(12): 4934-4944.
Deqi KONG, Yingying ZHANG, Wenling WU, Jun MA, Zhenxing SONG, Donghui ZHANG, Yanjun ZHANG. Simulation and analysis of oxygen production process by six-bed pressure swing adsorption process[J]. CIESC Journal, 2023, 74(12): 4934-4944.
步骤 | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
1 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
2 | AD2 | PR | ER2 | PUR | CoD | ED2 |
3 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
4 | ED2 | AD2 | PR | ER2 | PUR | CoD |
5 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
6 | CoD | ED2 | AD2 | PR | ER2 | PUR |
7 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
8 | PUR | CoD | ED2 | AD2 | PR | ER2 |
9 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
10 | ER2 | PUR | CoD | ED2 | AD2 | PR |
11 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
12 | PR | ER2 | PUR | CoD | ED2 | AD2 |
表1 六塔PSA工艺时序
Table 1 The schedule of six-bed PSA
步骤 | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
1 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
2 | AD2 | PR | ER2 | PUR | CoD | ED2 |
3 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
4 | ED2 | AD2 | PR | ER2 | PUR | CoD |
5 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
6 | CoD | ED2 | AD2 | PR | ER2 | PUR |
7 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
8 | PUR | CoD | ED2 | AD2 | PR | ER2 |
9 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
10 | ER2 | PUR | CoD | ED2 | AD2 | PR |
11 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
12 | PR | ER2 | PUR | CoD | ED2 | AD2 |
数学模型 | 数学方程 | 序号 |
---|---|---|
质量守恒方程 | (1) | |
(2) | ||
能量守恒方程 | (3) | |
(4) | ||
(5) | ||
动量守恒方程(Ergun方程) | (6) | |
吸附等温线方程 | (7) | |
LDF方程 | (8) | |
压缩机模型 | (9) | |
缓冲罐模型 | (10) | |
线性阀门模型 | (11) |
表2 PSA工艺数学模型
Table 2 The mathematical models of PSA process
数学模型 | 数学方程 | 序号 |
---|---|---|
质量守恒方程 | (1) | |
(2) | ||
能量守恒方程 | (3) | |
(4) | ||
(5) | ||
动量守恒方程(Ergun方程) | (6) | |
吸附等温线方程 | (7) | |
LDF方程 | (8) | |
压缩机模型 | (9) | |
缓冲罐模型 | (10) | |
线性阀门模型 | (11) |
参数 | N2 | O2 |
---|---|---|
IP1/(mol·kg-1·bar-1) | 7.895×10-4 | 1.224×10-2 |
IP2/K | 1750 | 626.5 |
IP3/bar-1 | 6.220×10-3 | 6.737×10-3 |
IP4/K | 721.2 | 174.1 |
R2 | 0.9989 | 0.9982 |
ΔH/(kJ·mol-1) | -15.82 | -5.03 |
表3 扩展型Langmuir 2型方程拟合参数
Table 3 Fitting parameters of extended Langmuir 2 model
参数 | N2 | O2 |
---|---|---|
IP1/(mol·kg-1·bar-1) | 7.895×10-4 | 1.224×10-2 |
IP2/K | 1750 | 626.5 |
IP3/bar-1 | 6.220×10-3 | 6.737×10-3 |
IP4/K | 721.2 | 174.1 |
R2 | 0.9989 | 0.9982 |
ΔH/(kJ·mol-1) | -15.82 | -5.03 |
参数 | 数值 |
---|---|
ρb/(kg·m-3) | 626.0 |
cps/(kJ·kg-1·K-1) | 0.92 |
rp/m | 0.00194 |
εb | 0.38 |
εp | 0.384 |
ks/(W·m-1·K-1) | 0.349 |
2.05 | |
4.98 | |
Hb/m | 1.23 |
Wt/m | 0.003 |
Db/m | 0.213 |
ρw/(kg·m-3) | 7850 |
cpw/(kJ·kg-1·K-1) | 0.46 |
hw/(W·m-2·K-1) | 60 |
kw/(W·m-1·K-1) | 45.3 |
Tamb/K | 293.15 |
Tfeed/K | 293.15 |
表4 吸附剂和吸附床参数
Table 4 Parameters of adsorbent and adsorption bed
参数 | 数值 |
---|---|
ρb/(kg·m-3) | 626.0 |
cps/(kJ·kg-1·K-1) | 0.92 |
rp/m | 0.00194 |
εb | 0.38 |
εp | 0.384 |
ks/(W·m-1·K-1) | 0.349 |
2.05 | |
4.98 | |
Hb/m | 1.23 |
Wt/m | 0.003 |
Db/m | 0.213 |
ρw/(kg·m-3) | 7850 |
cpw/(kJ·kg-1·K-1) | 0.46 |
hw/(W·m-2·K-1) | 60 |
kw/(W·m-1·K-1) | 45.3 |
Tamb/K | 293.15 |
Tfeed/K | 293.15 |
指标 | 计算公式 | 序号 |
---|---|---|
纯度( | (12) | |
回收率( | (13) | |
生产能力( | (14) |
表5 工艺性能评价指标
Table 5 Process performance indicator
指标 | 计算公式 | 序号 |
---|---|---|
纯度( | (12) | |
回收率( | (13) | |
生产能力( | (14) |
模拟工况 | 吸附压力/bar | 步骤时长/s | 产品流量/(m3·h-1) | O2纯度/% | O2回收率/% | 生产能力/(m3·h-1·kg-1) |
---|---|---|---|---|---|---|
1 | 6 | 7 | 6 | 95.38 | 40.45 | 3.48×10-2 |
2 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
3 | 6 | 9 | 6 | 91.87 | 52.00 | 3.35×10-2 |
4 | 6 | 10 | 6 | 89.17 | 57.26 | 3.25×10-2 |
5 | 6 | 11 | 6 | 86.03 | 60.58 | 3.14×10-2 |
6 | 6 | 12 | 6 | 82.46 | 62.95 | 3.01×10-2 |
7 | 4 | 8 | 6 | 80.53 | 57.67 | 2.94×10-2 |
8 | 4.5 | 8 | 6 | 86.24 | 55.09 | 3.14×10-2 |
9 | 5 | 8 | 6 | 89.74 | 53.16 | 3.27×10-2 |
10 | 5.5 | 8 | 6 | 92.19 | 50.44 | 3.36×10-2 |
11 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
12 | 6 | 8 | 4.5 | 96.19 | 37.31 | 2.63×10-2 |
13 | 6 | 8 | 5 | 95.27 | 40.94 | 2.89×10-2 |
14 | 6 | 8 | 5.5 | 94.73 | 43.85 | 3.16×10-2 |
15 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
16 | 6 | 8 | 6.5 | 92.81 | 49.64 | 3.66×10-2 |
17 | 6 | 8 | 7 | 91.62 | 52.21 | 3.90×10-2 |
18 | 6 | 8 | 7.5 | 90.31 | 54.53 | 4.11×10-2 |
19 | 6 | 8 | 8 | 88.85 | 56.60 | 4.32×10-2 |
表6 六塔PSA模拟结果
Table 6 The simulation results of six-bed PSA process
模拟工况 | 吸附压力/bar | 步骤时长/s | 产品流量/(m3·h-1) | O2纯度/% | O2回收率/% | 生产能力/(m3·h-1·kg-1) |
---|---|---|---|---|---|---|
1 | 6 | 7 | 6 | 95.38 | 40.45 | 3.48×10-2 |
2 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
3 | 6 | 9 | 6 | 91.87 | 52.00 | 3.35×10-2 |
4 | 6 | 10 | 6 | 89.17 | 57.26 | 3.25×10-2 |
5 | 6 | 11 | 6 | 86.03 | 60.58 | 3.14×10-2 |
6 | 6 | 12 | 6 | 82.46 | 62.95 | 3.01×10-2 |
7 | 4 | 8 | 6 | 80.53 | 57.67 | 2.94×10-2 |
8 | 4.5 | 8 | 6 | 86.24 | 55.09 | 3.14×10-2 |
9 | 5 | 8 | 6 | 89.74 | 53.16 | 3.27×10-2 |
10 | 5.5 | 8 | 6 | 92.19 | 50.44 | 3.36×10-2 |
11 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
12 | 6 | 8 | 4.5 | 96.19 | 37.31 | 2.63×10-2 |
13 | 6 | 8 | 5 | 95.27 | 40.94 | 2.89×10-2 |
14 | 6 | 8 | 5.5 | 94.73 | 43.85 | 3.16×10-2 |
15 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
16 | 6 | 8 | 6.5 | 92.81 | 49.64 | 3.66×10-2 |
17 | 6 | 8 | 7 | 91.62 | 52.21 | 3.90×10-2 |
18 | 6 | 8 | 7.5 | 90.31 | 54.53 | 4.11×10-2 |
19 | 6 | 8 | 8 | 88.85 | 56.60 | 4.32×10-2 |
流程 | 吸附剂 | 纯度/% | 回收率/% | 产品流量 | 文献 |
---|---|---|---|---|---|
两塔PSA | LiLSX | 92 | 40 | 13.57 L·min-1 | [ |
两塔PSA | 13X | 94 | 33 | 40 L·min-1 | [ |
两塔PSA | LiLSX | 93.59 | 40.7 | 6 m3·h-1(标准状况) | [ |
两塔PSA | LiX | 95.5 | 36 | 104 L·min-1 | [ |
六塔PSA | 13X | 93.83 | 46.85 | 6 m3·h-1 | 本文 |
表7 本文与已有文献的工艺性能对比
Table 7 Comparison of process performance between this work and existing literatures
流程 | 吸附剂 | 纯度/% | 回收率/% | 产品流量 | 文献 |
---|---|---|---|---|---|
两塔PSA | LiLSX | 92 | 40 | 13.57 L·min-1 | [ |
两塔PSA | 13X | 94 | 33 | 40 L·min-1 | [ |
两塔PSA | LiLSX | 93.59 | 40.7 | 6 m3·h-1(标准状况) | [ |
两塔PSA | LiX | 95.5 | 36 | 104 L·min-1 | [ |
六塔PSA | 13X | 93.83 | 46.85 | 6 m3·h-1 | 本文 |
1 | Kansha Y, Kishimoto A, Nakagawa T, et al. A novel cryogenic air separation process based on self-heat recuperation[J]. Separation and Purification Technology, 2011, 77(3): 389-396. |
2 | Murali R S, Sankarshana T, Sridhar S. Air separation by polymer-based membrane technology[J]. Separation & Purification Reviews, 2013, 42(2): 130-186. |
3 | Chiang A S T, Chung Y L, Cheng C W, et al. Experimental study on a four-bed PSA air separation process[J]. AIChE Journal, 1994, 40(12): 1976-1982. |
4 | Ruthven D M. Principles of Adsorption and Adsorption Processes[M]. New York: Wiley, 1984. |
5 | Ackley M W. Medical oxygen concentrators: a review of progress in air separation technology[J]. Adsorption, 2019, 25(8): 1437-1474. |
6 | Chin C, Kamin Z, Bahrun M H V, et al. The production of industrial-grade oxygen from air by pressure swing adsorption[J]. International Journal of Chemical Engineering, 2023, 2023: 1-11. |
7 | Bhat A A, Mang H, Rajkumar S, et al. On-board oxygen generation using high performance molecular sieve[J]. Defence Life Science Journal, 2017, 2(4): 380. |
8 | Zhang Q L, Liu Y S, Li Z Y, et al. Experimental study on oxygen concentrator with wide product flow rate range: individual parametric effect and process improvement strategy[J]. Separation and Purification Technology, 2021, 274: 118918. |
9 | Rao V R, Kothare M V, Sircar S. Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept[J]. AIChE Journal, 2014, 60(9): 3330-3335. |
10 | Liu Y S, Zhang Q L, Cao Y Z, et al. Effect of intermittent purge on O2 production with rapid pressure swing adsorption technology[J]. Adsorption, 2021, 27(2): 181-189. |
11 | Zhu X Q, Liu Y S, Yang R T. Effects of operating temperature on the performance of small scale rapid cycle pressure swing adsorption air separation process[J]. Adsorption, 2021, 27(2): 205-212. |
12 | Fernandez G F, Kenney C N. Modelling of the pressure swing air seperation process[J]. Chemical Engineering Science, 1983, 38(6): 827-834. |
13 | Farooq S, Ruthven D M. Numerical simulation of a kinetically controlled pressure swing adsorption bulk separation process based on a diffusion model[J]. Chemical Engineering Science, 1991, 46(9): 2213-2224. |
14 | Da Silva F A, Silva J A, Rodrigues A E. A general package for the simulation of cyclic adsorption processes[J]. Adsorption, 1999, 5(3): 229-244. |
15 | Rao V R, Kothare M V, Sircar S. Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen[J]. Adsorption, 2014, 20(1): 53-60. |
16 | Zhang C, Shen Y H, Zhang D H, et al. Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC[J]. Energy, 2022, 257: 124715. |
17 | Liu B, Yu X X, Shi W R, et al. Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24870-24882. |
18 | Jahromi P E, Fatemi S, Vatani A, et al. Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption[J]. Separation and Purification Technology, 2018, 193: 91-102. |
19 | Santos J C, Portugal A F, Magalhães F D, et al. Simulation and optimization of small oxygen pressure swing adsorption units[J]. Industrial & Engineering Chemistry Research, 2004, 43(26): 8328-8338. |
20 | Tian T, Wang Y Y, Liu B, et al. Simulation and experiment of six-bed PSA process for air separation with rotating distribution valve[J]. Chinese Journal of Chemical Engineering, 2022, 42: 329-337. |
21 | Mofarahi M, Towfighi J, Fathi L. Oxygen separation from air by four-bed pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5439-5444. |
22 | Qadir S, Li D F, Gu Y M, et al. Experimental and numerical analysis on the enhanced separation performance of a medical oxygen concentrator through two-bed rapid pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2021, 60(16): 5903-5913. |
23 | Ding Z Y, Han Z Y, Fu Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption, 2018, 24(5): 499-516. |
24 | Park Y J, Lee S J, Moon J H, et al. Adsorption equilibria of O2, N2, and Ar on carbon molecular sieve and zeolites 10X, 13X, and LiX[J]. Journal of Chemical & Engineering Data, 2006, 51(3): 1001-1008. |
25 | Wang Y Y, An Y X, Ding Z Y, et al. Integrated VPSA processes for air separation based on dual reflux configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6562-6575. |
26 | Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
27 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501. |
28 | Chen S R, Shen Y H, Guan Z B, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051. |
29 | Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482. |
30 | Park D, Ju Y, Kim J H, et al. Equilibrium and kinetics of nitrous oxide, oxygen and nitrogen adsorption on activated carbon and carbon molecular sieve[J]. Separation and Purification Technology, 2019, 223: 63-80. |
31 | Chou C T, Chen C Y. Carbon dioxide recovery by vacuum swing adsorption[J]. Separation and Purification Technology, 2004, 39(1/2): 51-65. |
32 | Tian C X, Fu Q, Ding Z Y, et al. Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2 [J]. Separation and Purification Technology, 2017, 189: 54-65. |
33 | Liu W, Ji Y, Wang R Q, et al. Analysis on temperature vacuum swing adsorption integrated with heat pump for efficient carbon capture[J]. Applied Energy, 2023, 335: 120757. |
34 | Hu G P, Zhao Q H, Tao L F, et al. Enrichment of low grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon[J]. Chemical Engineering Science, 2021, 229: 116152. |
35 | Arora A, Faruque Hasan M M. Flexible oxygen concentrators for medical applications[J]. Scientific Reports, 2021, 11: 14317. |
36 | 刘应书, 张全立, 刘文海, 等. PSA制氧过程产品气流量对其氧气体积分数的影响[J]. 工程科学学报, 2020, 42(11): 1507-1515. |
Liu Y S, Zhang Q L, Liu W H, et al. Influence of product flow rate on O2 volume fraction in PSA oxygen generation process[J]. Chinese Journal of Engineering, 2020, 42(11): 1507-1515. | |
37 | 张辉, 刘应书, 党璐璐, 等. 微型变压吸附低压差吸附工艺[J]. 化工进展, 2009, 28(11): 1901-1905. |
Zhang H, Liu Y S, Dang L L, et al. Experimental study on low differential pressure adsorption process of small-scale oxygen generation by pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 1901-1905. | |
38 | 曹永正, 刘应书. 两塔变压吸附循环中两步均压的研究[J]. 湖南师范大学自然科学学报, 2016, 39(2): 53-58. |
Cao Y Z, Liu Y S. The study of the two-stage pressure equalization step in the two-bed PSA cycle[J]. Journal of Natural Science of Hunan Normal University, 2016, 39(2): 53-58. | |
39 | Zheng X G, Liu Y S, Liu W H. Two-dimensional modeling of the transport phenomena in the adsorber during pressure swing adsorption process[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11814-11824. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[6] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[7] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[15] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 202
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||