化工学报 ›› 2016, Vol. 67 ›› Issue (S2): 26-31.DOI: 10.11949/j.issn.0438-1157.20161585

• 热力学 • 上一篇    下一篇

纤维二糖在离子液体1-丁基-3-甲基咪唑氯盐中的结构动力学特性

刘佳1,2, 杜芬芬1,2, 严思仪1,2, 蔡开聪1,2   

  1. 1. 福建师范大学化学与化工学院, 福建 福州 350007;
    2. 福建省理论与计算化学重点实验室, 福建 厦门 361005
  • 收稿日期:2016-11-09 修回日期:2016-11-18 出版日期:2016-12-30 发布日期:2016-12-30
  • 通讯作者: 蔡开聪
  • 基金资助:

    国家自然科学基金项目(2020619);福建省教育厅资助项目(JA13063);福建省师范大学大学生创新创业项目(201510394056,201610394054)。

Structural dynamics of cellobiose in 1-butyl-3-methylimidazolium chloride ionic liquid

LIU Jia1,2, DU Fenfen1,2, YAN Siyi1,2, CAI Kaicong1,2   

  1. 1. College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China;
    2. Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, Fujian, China
  • Received:2016-11-09 Revised:2016-11-18 Online:2016-12-30 Published:2016-12-30
  • Supported by:

    supported by the National Natural Science Foundation of China (2020619) and the Education Department of Fujian Province of China (JA13063).

摘要:

开展分子动力学模拟探索不同压力条件下纤维素的基本结构单元——纤维二糖在离子液体1-丁基-3-甲基咪唑氯盐([C4mim]Cl)中的结构动力学特征。研究结果表明,高压环境使二糖分子内氢键网络结构瓦解,二糖与阴阳离子间相互作用增强,形成溶质-溶剂间氢键。借助空间分布函数得到常压及高压环境下二糖分子周围溶剂层分布特征,并通过径向分布函数定量考察了纤维二糖/离子液体体系分子间与分子内的氢键特征,为在化学键水平上认识纤维素在离子液体中溶解机制提供必要的理论基础。

关键词: 纤维二糖, 离子液体, 分子模拟, 压力, 主元分析

Abstract:

Molecular dynamic simulations were performed for the structural dynamics of cellobiose in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) under 1 atm and 800 atm.Results show that the interaction between cellobiose and ionic liquid is enhanced due to the formation of intermolecuar hydrogen bond, and thus break the intramolecular hydrogen bonding network within cellobiose under high pressure.Spatial distribution functions were calculated for the visualization of the solvation environments of cellobiose under 1 atm and 800 atm, and the intra- and intermolecular hydrogen bonding effect were quantitatively investigated by using radial distribution functions.The results would be helpful for understanding about the mechanism of dissolving cellobiose in ionic liquid at chemical bond level.

Key words: cellobiose, ionic liquids, molecular simulation, pressure, principal component analysis

中图分类号: