化工学报 ›› 2018, Vol. 69 ›› Issue (1): 9-43.DOI: 10.11949/j.issn.0438-1157.20171230
马学虎, 兰忠, 王凯, 陈彦松, 程雅琦, 杜宾港, 叶轩
收稿日期:
2017-09-08
修回日期:
2017-11-01
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
马学虎
基金资助:
国家自然科学基金项目(51236002,21476037,51476018)。
MA Xuehu, LAN Zhong, WANG Kai, CHEN Yansong, CHENG Yaqi, DU Bingang, YE Xuan
Received:
2017-09-08
Revised:
2017-11-01
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171230
Supported by:
supported by the National Natural Science Foundation of China (51236002, 21476037, 51476018).
摘要:
液滴动态行为的调控在包括微化工、相变传热、喷雾冷却、农药喷洒、微流控芯片等领域都具有广泛的应用。液滴润湿过程包含着复杂的固液界面现象,借助界面效应对液滴动态行为进行调控是液滴调控领域的热点方向。将围绕多尺度润湿、界面结构驱动的液滴动态行为等过程中的若干科学问题进行综述。首先介绍了多尺度表面润湿基本理论,讨论了核化过程、液滴多尺度润湿、液滴弹跳和液滴多向迁移过程及液滴撞击固体表面过程中的固液界面作用机理,并展现了液滴动态调控在相变传热、喷墨打印、农药喷洒和微流控等工业过程的调控作用、应用以及主要发展趋势和方向。
中图分类号:
马学虎, 兰忠, 王凯, 陈彦松, 程雅琦, 杜宾港, 叶轩. 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43.
MA Xuehu, LAN Zhong, WANG Kai, CHEN Yansong, CHENG Yaqi, DU Bingang, YE Xuan. Dancing droplet: interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1): 9-43.
[1] | YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. |
[2] | NISHINO T, MEGURO M, NAKAMAE K, et al. The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15(13):4321-4323. |
[3] | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994. |
[4] | CASSIE A, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551. |
[5] | LÜ C J, YIN Y J, ZHENG Q S. Nonlinear effects of line tension in adhesion of small droplets[J]. Applied Mathematics and Mechanics, 2008, 29(10):1251-1262. |
[6] | BORUVKA L, NEUMANN A. Generalization of the classical theory of capillarity[J]. The Journal of Chemical Physics, 1977, 66(12):5464-5476. |
[7] | DRELICH J. The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1996, 116(1):43-54. |
[8] | WONG T S, HO C M. Dependence of macroscopic wetting on nanoscopic surface textures[J]. Langmuir, 2009, 25(22):12851-12854. |
[9] | BORMASHENKO E. General equation describing wetting of rough surfaces[J]. Journal of Colloid and Interface Science, 2011, 360(1):317-319. |
[10] | WOLANSKY G, MARMUR A. Apparent contact angles on rough surfaces:the Wenzel equation revisited[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 156(1):381-388. |
[11] | GAO L, MCCARTHY T J. How Wenzel and Cassie were wrong[J]. Langmuir, 2007, 23(7):3762-3765. |
[12] | EXTRAND C. Contact angles and hysteresis on surfaces with chemically heterogeneous islands[J]. Langmuir, 2003, 19(9):3793-3796. |
[13] | LAPLACE P S. Theory of capillary attraction[M]//Supplements to the 10th Book of Celestial Mechanics, 1807. |
[14] | THOMSON W. On the equilibrium of vapour at a curved surface of liquid[J]. Proceedings of the Royal Society of Edinburgh, 1872, 7:63-68. |
[15] | RAO D. The concept, characterization, concerns and consequences of contact angles in solid-liquid-liquid systems[J]. Contact Angle, Wettability and Adhesion, 2003, 3:191-210. |
[16] | LAFUMA A, QUÉRÉ D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7):457. |
[17] | QUÉRÉ D. Non-sticking drops[J]. Reports on Progress in Physics, 2005, 68(11):2495. |
[18] | NOSONOVSKY M. Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis[J]. The Journal of Chemical Physics, 2007, 126(22):224701. |
[19] | 隋涛, 汪家道, 陈大融. Cassie状态到Wenzel状态转换的能量分析[J]. 化工学报, 2011, 62(5):1352-1357. SUI T, WANG J D, CHEN D R. Energy analysis for transition from Cassie state to Wenzel state[J]. CIESC Journal, 2011, 62(5):1352-1357. |
[20] | REN W. Wetting transition on patterned surfaces:transition states and energy barriers[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2014, 30(10):2879-2885. |
[21] | MURAKAMI D, JINNAI H, TAKAHARA A. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces[J]. Langmuir, 2014, 30(8):2061-2067. |
[22] | WANG Y, WANG X, DU Z, et al. Evaluation of macroscale wetting equations on a microrough surface[J]. Langmuir, 2015, 31(8):2342-2350. |
[23] | JAKOB M. Heat transfer in evaporation and condensation[J]. Mechanical Engineering, 1936, 58:729-739. |
[24] | TAMMANN G B W. Die zahl der wassertrcpfchen bei der condensation auf verschiedenen festen stiffen[J]. Annalen der Physik, 1935, 5:77-80. |
[25] | TIAN Q L, CHUN F M, XIANG Y S, et al. Mechanism study on formation of initial condensate droplets[J]. AIChE Journal, 2007, 53(4):1050-1055. |
[26] | LAN Z, XU W, ZHU X, et al. Microscale behaviors of dropwise condensation:reflection spectrum analysis[C]//ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012:385-389. |
[27] | SONG T, LAN Z, MA X, et al. Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution[J]. International Journal of Thermal Sciences, 2009, 48(12):2228-2236. |
[28] | LAN Z, WEN R, WANG A, et al. A droplet model in steam condensation with noncondensable gas[J]. International Journal of Thermal Sciences, 2013, 68:1-7. |
[29] | LAN Z, WANG D, CAO K, et al. Dynamic behaviors of condensing clusters based on Rayleigh scattering experiment[J]. Scientific Reports, 2017, 7(1):987. |
[30] | XU W, LAN Z, PENG B, et al. Evolution of transient cluster/droplet size distribution in a heterogeneous nucleation process[J]. RSC Advances, 2014, 4(60):31692. |
[31] | 徐威, 彭本利, 温荣福, 等. 刻蚀表面冷凝核化点分布的实验研究[J]. 工程热物理学报, 2013, 34(3):538-541. XU W, PENG B L, WEN R F, et al. Experimental study on the nucleation sites distribution of chemical etched surface[J]. Journal of Engineering Thermophysics, 2013, 34(3):538-541. |
[32] | XU W, LAN Z, PENG B, et al. Effect of nano structures on the nucleus wetting modes during water vapour condensation:from individual groove to nano-array surface[J]. RSC Advances, 2016, 6(10):7923-7932. |
[33] | BOREYKO J B, CHEN C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18):184501. |
[34] | XU W, LAN Z, PENG B, et al. Directional movement of droplets in grooves:suspended or immersed?[J]. Scientific Reports, 2016, 6(1):18836. |
[35] | KIM S, KIM K J. Kim dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8):081502. |
[36] | JUNG Y C, BHUSHAN B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces[J]. Journal of Microscopy-Oxford, 2008, 229(1):127-140. |
[37] | MA X H, SONG T Y, LAN Z, et al. Transient characteristics of initial droplet size distribution and effect of pressure on evolution of transient condensation on low thermal conductivity surface[J]. International Journal of Thermal Sciences, 2010, 49(9):1517-1526. |
[38] | RYKACZEWSKI K. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces[J]. Langmuir, 2012, 28(20):7720-7729. |
[39] | WEN R, LAN Z, PENG B, et al. Droplet dynamics and heat transfer for dropwise condensation at lower and ultra-lower pressure[J]. Applied Thermal Engineering, 2015, 88:265-273. |
[40] | NARHE R D, BEYSENS D A. Growth dynamics of water drops on a square-pattern rough hydrophobic surface[J]. Langmuir, 2007, 23(12):6486-6489. |
[41] | WIER K A, MCCARTHY T J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility:ultrahydrophobic surfaces are not always water repellant[J]. Langmuir, 2006, 22(6):2433-2436. |
[42] | LIU T, SUN W, LI X, et al. Growth modes of condensates on nano-textured surfaces and mechanism of partially wetted droplet formation[J]. Soft Matter, 2013, 9(41):9807-9815. |
[43] | MILJKOVIC N, ENRIGHT R, WANG E N. Modeling and optimization of superhydrophobic condensation[J]. Journal of Heat Transfer, 2013, 135(11):111004. |
[44] | 程雅琦. 超疏水表面低压蒸汽冷凝液滴分布及传热强化[D]. 大连:大连理工大学, 2016. CHENG Y Q. Droplet size distribution and heat transfer enhancement for steam condensation on superhydrophobic surface at low pressure[D]. Dalian:Dalian University of Technology, 2016. |
[45] | WEN R, MA X, LAN Z, et al. Surface subcooling induced wetting transition and invalid superhydrophobicity during pure steam condensation[C]//ASME International Mechanical Engineering Congress & Exposition (IMECE), 2014. |
[46] | MA X, WANG S, LAN Z, et al. Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas[J]. Journal of Heat Transfer, 2012, 134(2):021501. |
[47] | 王四芳, 兰忠, 王爱丽, 等. 超疏水表面蒸汽及含不凝气蒸汽滴状冷凝传热实验分析[J]. 化工学报, 2010, 61(3):607-611. WANG S F, LAN Z, WANG A L, et al. Dropwise condensation of steam and steam-air mixture on super-hydrophobic surfaces[J]. CIESC Journal, 2010, 61(3):607-611. |
[48] | LIU T, SUN W, SUN X, et al. Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state[J]. Langmuir, 2010, 26(18):14835-14841. |
[49] | 刘天庆, 孙玮, 孙相彧, 等. 超疏水表面微纳二级结构对冷凝液滴最终状态的影响[J]. 物理化学学报, 2010, 26(11):2989-2996. LIU T Q, SUN W, SUN X Y, et al. Effect of hierarchical architecture of super-hydrophobic surface on the condensed drop's final state[J]. Acta Physica Sinica, 2010, 26(11):2989-2996. |
[50] | 王四芳. 超疏水表面混合蒸气滴状冷凝液滴行为与传热[D]. 大连:大连理工大学, 2011. WANG S F. Wetting evolution and heat transfer characteristics in dropwise condensation of steam-air mixture on superhydrophobic surface[D]. Dalian:Dalian University of Technology, 2011. |
[51] | LÜ C, HAO P, ZHANG X, et al. Dewetting transitions of dropwise condensation on nanotexture enhanced superhydrophobic surfaces[J]. ACS Nano, 2015, 9(12):12311-12319. |
[52] | ZHANG B, CHEN X, DOBNIKAR J, et al. Spontaneous Wenzel to Cassie dewetting transition on structured surfaces[J]. Physical Review Fluids, 2016, 1(7):073904. |
[53] | WEN R, XU S, YANG R. Micromesh-covered superhydrophobic surfaces for efficient condensation heat transfer[C]//Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 201716th IEEE Intersociety Conference on. IEEE, 2017:220-226. |
[54] | WEN R, LI Q, WU J, et al. Hydrophobic copper nanowires for enhancing condensation heat transfer[J]. Nano Energy, 2017, 33:177-183. |
[55] | ELVERSSON J, MILLQVIST-FUREBY A, ALDERBORN G, et al. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying[J]. Journal of Pharmaceutical Sciences, 2003, 92(4):900-910. |
[56] | DE GANS B J, DUINEVELD P C, SCHUBERT U S. Inkjet printing of polymers:state of the art and future developments[J]. Advanced Materials, 2004, 16(3):203-213. |
[57] | TEH S Y, LIN R, HUNG L H, et al. Droplet microfluidics[J]. Lab Chip, 2008, 8(2):198-220. |
[58] | PAULSEN J D. Approach and coalescence of liquid drops in air[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 88(6):063010. |
[59] | AARTS D G A L, LEKKERKERKER H N W, GUO H, et al. Hydrodynamics of droplet coalescence[J]. Physical Review Letters, 2005, 95(16):164503. |
[60] | MENCHACA-ROCHA A, MART NEZ-D VALOS A, NEZ R, et al. Coalescence of liquid drops by surface tension[J]. Physical Review E, 2001, 63(4):046309. |
[61] | BOWEN E. The fomation of rain by coalescence[J]. Australian Journal of Chemistry, 1950, 3(2):193-213. |
[62] | EGGERS J, LISTER J R, STONE H A. Coalescence of liquid drops[J]. Journal of Fluid Mechanics, 1999, 401:293-310. |
[63] | DUCHEMIN L, EGGERS J, JOSSERAND C. Inviscid coalescence of drops[J]. Journal of Fluid Mechanics, 2003, 487:167-178. |
[64] | PAULSEN J D, BURTON J C, NAGEL S R, et al. The inexorable resistance of inertia determines the initial regime of drop coalescence[J]. Proceedings of the National Academy of Sciences, 2012, 109(18):68576861. |
[65] | NIKOLAYEV V S, BEYSENS D A. Relaxation of nonspherical sessile drops towards equilibrium[J]. Physical Review E, 2002, 65(4):046135. |
[66] | BOREYKO J B, CHEN C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18):184501. |
[67] | CHEN X, WU J, MA R, et al. Nanograssed micropyramidal architectures for continuous dropwise condensation[J]. Advanced Functional Materials, 2011, 21(24):4617-4623. |
[68] | LIU J, GUO H, ZHANG B, et al. Guided self-propelled leaping of droplets on a micro-anisotropic superhydrophobic surface[J]. Angewandte Chemie, 2016, 128(13):4337-4341. |
[69] | WANG K, LIANG Q Q, JIANG R, et al. Numerical simulation of coalescence-induced jumping of multidroplets on superhydrophobic surfaces:initial droplet arrangement effect[J]. Langmuir, 2017, 33(25):6258-6268. |
[70] | WISDOM K M, WATSON J A, QU X, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. Proceedings of the National Academy of Sciences, 2013, 110(20):7992-7997. |
[71] | WATSON G S, GREEN D W, SCHWARZKOPF L, et al. A gecko skin micro/nano structure-a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface[J]. Acta Biomaterialia, 2015, 21:109-122. |
[72] | LÜ C, HAO P, YAO Z, et al. Condensation and jumping relay of droplets on lotus leaf[J]. Applied Physics Letters, 2013, 103(2):021601. |
[73] | PENG B, WANG S, LAN Z, et al. Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence[J]. Applied Physics Letters, 2013, 102(15):151601. |
[74] | WANG F C, YANG F Q, ZHAO Y P. Size effect on the coalescence-induced self-propelled droplet[J]. Applied Physics Letters, 2011, 98:053112. |
[75] | TIAN J, ZHU J, GUO H Y, et al. Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles[J]. The Journal of Physical Chemistry Letters, 2014, 5(12):2084-2088. |
[76] | HE M, ZHANG Q, ZENG X, et al. Hierarchical porous surface for efficiently controlling microdroplets' self-removal[J]. Advanced Materials, 2013, 25(16):2291-2295. |
[77] | 王凯, 梁倩卿, 姜睿, 等. 凸起微结构对超疏水表面液滴弹跳强化机理的研究[J]. 高校化学工程学报, 2017, 31(3):663-668. WANG K, LIANG Q Q, JIANG R, et al. Mechanism of droplet jumping enhancement by raised structures on superhydrophobic surfaces[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3):663-668. |
[78] | WANG K, LI R, LIANG Q, et al. Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces[J]. Applied Physics Letters, 2017, 111(6):061603. |
[79] | ZHANG Q, HE M, CHEN J, et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets[J]. Chemical Communications, 2013, 49(40):4516-4518. |
[80] | MILJKOVIC N, ENRIGHT R, NAM Y, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1):179-187. |
[81] | KIM M K, CHA H, BIRBARAH P, et al. Enhanced jumping-droplet departure[J]. Langmuir, 2015, 31(49):13452-13466. |
[82] | YANAGISAWA K, SAKAI M, ISOBE T, et al. Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions[J]. Applied Surface Science, 2014, 315:212-221. |
[83] | CHA H, XU C, SOTELO J, et al. Coalescence-induced nanodroplet jumping[J]. Physical Review Fluids, 2016, 1(6):064102. |
[84] | WANG K, LIANG Q, JIANG R, et al. Numerical simulation of coalescence-induced jumping of multidroplets on superhydrophobic surfaces:initial droplet arrangement effect[J]. Langmuir, 2017, 33(25):6258-6268. |
[85] | WANG K, LIANG Q, JIANG R, et al. Self-enhancement of droplet jumping velocity:the interaction of liquid bridge and surface texture[J]. RSC Advances, 2016, 6(101):99314-99321. |
[86] | WEN R, MA X, LAN Z, et al. Retention effect of droplet departure in dropwise condensation at low steam pressure[J]. Chinese Science Bulletin, 2015, 60(28/29):2784-2789. |
[87] | MA X, LAN Z, XU W, et al. Effect of surface free energy difference on steam-ethanol mixture condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(4):531-537. |
[88] | MA X, ZHOU X, LAN Z, et al. Experimental investigation of enhancement of dropwise condensation heat transfer of steam-air mixture-falling droplet effect[J]. Journal of Enhanced Heat Transfer, 2007, 14(4):295-305. |
[89] | MA X, ZHOU X D, LAN Z, et al. Condensation heat transfer enhancement for steam-air mixture vapour by interfacial behavior of the falling droplets[C]//International Heat Transfer Conference 13. Begel House Inc., 2006. |
[90] | 周兴东. 导热功能表面强化混合蒸气冷凝传热机理的研究[D]. 大连:大连理工大学, 2007. ZHOU X D. Preparation and application of functional surface in condensation heat transfer enhancement of mixture vapor[D]. Dalian:Dalian University of Technology, 2007. |
[91] | 马学虎, 宋天一, 兰忠, 等. 固液界面能差效应与冷凝传热强化研究进展[J]. 化工学报, 2006, 57(8):1763-1775. MA X H, SONG T Y, LAN Z, et al. Advances in liquid-solid-interfacial-energy-difference effect and condensation heat transfer enhancement[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(8):1763-1775. |
[92] | KIM S, KIM K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8):081502. |
[93] | ROSE J W. Dropwise condensation theory and experiment:a review[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2002, 216(2):115-128. |
[94] | ROSE J W. Condensation heat transfer fundamentals[J]. Chemical Engineering Research and Design, 1998, 76(2):143-152. |
[95] | 温荣福. 低压蒸汽滴状冷凝传热微观机理及强化[D]. 大连:大连理工大学, 2015. WEN R F. Microscopic mechanism of steam dropwise condensation at low pressure and heat transfer enhancement[D]. Dalian:Dalian University of Technology, 2015. |
[96] | PENG B, MA X, LAN Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83:27-38. |
[97] | PENG B, MA X, LAN Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface:droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77:785-794. |
[98] | LAN Z, CHEN Y, HU S, et al. Droplet regulation and dropwise condensation heat transfer enhancement on hydrophobic-superhydrophobic hybrid surfaces[J]. Heat Transfer Engineering, 2017, (in press). |
[99] | DANIEL S, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504):633-636. |
[100] | 王宏, 廖强, 朱恂. 梯度表面能材料上液滴运动机理[J]. 化工学报, 2007, 58(9):2313-2320. WANG H, LIAO Q, ZHU X. Mechanism of liquid droplet movement on surface with gradient surface energy[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9):2313-2320. |
[101] | XU L, LI Z, YAO S. Directional motion of evaporating droplets on gradient surfaces[J]. Applied Physics Letters, 2012, 101(6):064101. |
[102] | LIU Y, MOEVIUS L, XU X, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7):515-519. |
[103] | WEN R, LAN Z, PENG B, et al. Wetting transition of condensed droplets on nanostructured superhydrophobic surfaces:coordination of surface properties and condensing conditions[J]. ACS Applied Materials and Interfaces, 2017, 9(15):13770-13777. |
[104] | BHUSHAN B, JUNG Y C. Dynamic effects of bouncing water droplets on superhydrophobic surfaces[J]. Langmuir, 2008, 24:6262-6269. |
[105] | LI X, MA X, LAN Z. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface:the effect of the remaining liquid film arising on the pillars' tops on the contact time[J]. Langmuir, 2010, 26(7):4831-4838. |
[106] | KRUMPFER J W, MCCARTHY T J. Dip-coating crystallization on a superhydrophobic surface:a million mounted crystals in a 1 cm2 array[J]. Journal of the American Chemical Society, 2011, 133(15):5764-5766. |
[107] | LI X, MAO L, MA X. Dynamic behavior of water droplet impact on microtextured surfaces:the effect of geometrical parameters on anisotropic wetting and the maximum spreading diameter[J]. Langmuir, 2013, 29(4):1129-1138. |
[108] | LI X, MA X, LAN Z. Behavioral patterns of drop impingement onto rigid substrates with a wide range of wettability and different surface temperatures[J]. AlChE Journal, 2009, 55(8):1983-1992. |
[109] | 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8):2745-2751. LIANG C, WANG H, ZHU X, et al. Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64(8):2745-2751. |
[110] | 杨卧龙, 徐进良, 纪献兵. 超亲水多孔表面的小液滴发射行为及动力学特性[J]. 化工学报, 2016, 67(9):3607-3615. YANG W L, XU J L, JI X B. Ejection profile and kinetics of droplets spreading on superhydrophilic porous surfaces[J]. CIESC Journal, 2016, 67(9):3607-3615. |
[111] | ZHENG Y, MA X, LI Y, et al. Experimental study of falling film evaporation heat transfer on superhydrophilic horizontal-tubes at low spray density[J]. Applied Thermal Engineering, 2017, 111:1548-1556. |
[112] | 周兴东, 马学虎, 兰忠, 等. 冷凝液运动行为强化含有不凝气的蒸汽冷凝过程研究[J]. 高校化学工程学报, 2007, 21(5):740-746. ZHOU X D, MA X H, LAN Z, et al. Falling movement effect of the condensate on condensation heat transfer enhancement in the presence of non-condensable gas[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(5):740-746. |
[113] | BOREYKO J B, ZHAO Y, CHEN C H. Planar jumping-drop thermal diodes[J]. Applied Physics Letters, 2011, 99(23):234105. |
[114] | XIAO R, MILJKOVIC N, ENRIGHT R, et al. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer[J]. Scientific Reports, 2013, 3:1988. |
[115] | WEN R, XU S, MA X, et al. Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer[J]. Joule, 2017, (in press). |
[116] | AGAPOV R L, BOREYKO J B, BRIGGS D P, et al. Asymmetric wettability of nanostructures directs Leidenfrost droplets[J]. ACS Nano, 2014, 8(1):860-867. |
[117] | AGAPOV R L, BOREYKO J B, BRIGGS D P, et al. Length scale of Leidenfrost ratchet switches droplet directionality[J]. Nanoscale, 2014, 6(15):9293-9299. |
[118] | MILJKOVIC N, PRESTON D J, ENRIGHT R, et al. Jumping-droplet electrostatic energy harvesting[J]. Applied Physics Letters, 2014, 105(1):013111. |
[119] | 刘旭. 离心场下混合蒸气滴状冷凝特性的研究[D]. 大连:大连理工大学, 2017. LIU X. Study of dropwise condensation characteristics of steam with non-condensable gas in centrifugal field[D]. Dalian:Dalian University of Technology, 2017. |
[120] | 潘朝群, 邓先和. 错流型超重力旋转填料床中液滴的运动模型[J]. 化工学报, 2003, 54(7):918-922. PAN C Q, DENG X H. Motion model of droplet in cross-rotating packed bed[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(7):918-922. |
[121] | 王振宁. 电子产品的喷墨印刷制造工艺与质量性能研究——压电式喷墨液滴形成与撞击过程的研究[D]. 无锡:江南大学, 2010. WANG Z N. Research on manufacture process and quality of inkjet printing of electronic products-research on formation and spreading of piezoelectric inkjet droplets[D]. Wuxi:Jiangnan University, 2010. |
[122] | KANNANGARA D, ZHANG H, SHEN W. Liquid-paper interactions during liquid drop impact and recoil on paper surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 280(1):203-215. |
[123] | PARK H, CARR W W, ZHU J, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2003, 49(10):2461-2471. |
[124] | BOUKHALFA H H, MASSINON M, BELHAMRA M, et al. Contribution of spray droplet pinning fragmentation to canopy retention[J]. Crop Protection, 2014, 56:91-97. |
[125] | ANDRADE R, SKURTYS O, OSORIO F. Experimental study of drop impacts and spreading on epicarps:effect of fluid properties[J]. Journal of Food Engineering, 2012, 109(3):430-437. |
[126] | VAIKUNTANATHAN V, KANNAN R, SIVAKUMAR D. Impact of water drops onto the junction of a hydrophobic texture and a hydrophilic smooth surface[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2010, 369(1/2/3):65-74. |
[127] | 钟香梅. 典型靶标作物叶表面对农药液滴吸附特性的研究[D]. 长春:吉林大学, 2015. ZHONG X M. Study on adsorption characteristics of pesticide droplets on leaf surface of the typical target crops[D]. Changchun:Jilin University, 2015. |
[128] | SONG M, JU J, LUO S. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant[J]. Science Advances, 2017, 3(3):e1602188. |
[129] | 龚欣, 刘海峰, 李伟锋, 等. 气流式雾化过程的有限随机分裂模型[J]. 化工学报, 2005, 56(5):786-790. GONG X, LIU H F, LI W F, et al. Finite stochastic breakup model of air blast atomization process[J]. CIESC Journal, 2005, 56(5):786-790. |
[130] | 王树众, 昝元峰, 李慧君, 等. 水平油气两相流中液滴分布的衰减系数[J]. 化工学报, 2004, 55(3):481-484. WANG S Z, ZAN Y F, LI H J, et al. Decay coefficient of droplet spatial distribution in horizontal oil/gas pipeline[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(3):481-484. |
[131] | CHENG W L, PENG H, CHEN H, et al. Experimental investigation on the heat transfer characteristics of vacuum spray flash evaporation cooling[J]. International Journal of Heat and Mass Transfer, 2016, 102:233-240. |
[132] | ZHOU Z F, CHEN B, WANG R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70:96-104. |
[133] | SHUI L, EIJKEL J C T, VAN DEN BERG A. Multiphase flow in microfluidic systems-control and applications of droplets and interfaces[J]. Advances in Colloid and Interface Science, 2007, 133(1):35-49. |
[134] | SONG H, CHEN D L, ISMAGILOV R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie, 2006, 45(44):7336-7356. |
[135] | WEN H, YU Y, ZHU G, et al. A droplet microchip with substance exchange capability for the developmental study of C. elegans[J]. Lab on a Chip, 2015, 15(8):1905-1911. |
[136] | WANG K, WANG Y J, CHEN G G, et al. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles[J]. Industrial and Engineering Chemistry Research, 2007, 46(19):6092-6098. |
[137] | YAN Y, BOEY D, LI T N, et al. Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics[J]. Biosensors and Bioelectronics, 2016, 77:428-434. |
[138] | 魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64(2):517-523. WEI L J, ZHU C Y, FU T T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2):517-523. |
[139] | 王凯, 易诗婷, 周倩倩, 等. 微通道内纳米颗粒对液滴聚并的影响规律[J]. 化工学报, 2016, 67(2):469-475. WANG K, YI S T, ZHOU Q Q, et al. Effect of nano-particles on droplet coalescence in microchannel device[J]. CIESC Journal, 2016, 67(2):469-475. |
[140] | GERDTS C J, VALENTINA T, YADAV M K, et al. Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization[J]. Angewandte Chemie International Edition, 2006, 45(48):8156-8160. |
[141] | NAJAH M, CALBRIX R, MAHENDRA-WIJAYA I, et al. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms[J]. Chemistry and Biology, 2014, 21(12):1722-1732. |
[142] | HUH D, BAHNG J H, LING Y, et al. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification[J]. Analytical Chemistry, 2007, 79(4):1369-1376. |
[143] | TAN Y C, YAO L H, LEE A P. Microfluidic sorting of droplets by size[J]. Microfluidics and Nanofluidics, 2008, 4(4):343-348. |
[144] | LEMAN M, ABOUAKIL F, GRIFFITHS A D, et al. Droplet-based microfluidics at the femtolitre scale[J]. Lab on a Chip, 2015, 15(3):753-765. |
[145] | TAO Y, ROTEM A, ZHANG H, et al. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics[J]. Lab on a Chip, 2015, 15(19):3934-3940. |
[146] | ZHENG B, ROACH L S, ISMAGILOV R F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets[J]. Journal of the American Chemical Society, 2003, 125(37):11170. |
[147] | 朱丽娜, 祝莹, 方群. 基于微流控技术的蛋白质结晶及其筛选方法的研究进展[J]. 高等学校化学学报, 2014, 35(1):1-11. ZHU L N, ZHU Y, FANG Q. Recent progress of microfluidic techniques for protein crystallization and screening[J]. Chemical Journal of Chinese Universities, 2014, 35(1):1-11. |
[148] | SONG H, TICE J D, ISMAGILOV R F. A microfluidic system for controlling reaction networks in time[J]. Angewandte Chemie, 2003, 115(7):792-796. |
[149] | 肖志良, 张博. 基于液滴技术的微流控芯片实验室及其应用[J]. 色谱, 2011, 29(10):949-956. XIAO Z L, ZHANG B. Droplet microfluidics:technologies and applications[J]. Chinese Journal of Chromatography, 2011, 29(10):949-956. |
[150] | BAROUD C N, GALLAIRE F, DANGLA R. Dynamics of microfluidic droplets[J]. Lab on a Chip, 2010, 10(16):2032-2045. |
[151] | 张吉松, 刘国涛, 王凯, 等.微通道内传递对液液分散过程的影响规律[J]. 化工学报, 2015, 66(8):2940-2946. ZHANG J S, LIU G T, WANG K, et al. Effect of transfer on liquid-liquid dispersion in microchannels[J]. CIESC Journal, 2015, 66(8):2940-2946. |
[152] | 赵述芳, 白琳, 付宇航, 等. 液滴流微反应器的基础研究及其应用[J]. 化工进展, 2015, 34(3):593-607. ZHAO S F, BAI L, FU Y H, et al. Fundamental research and applications of droplet-based microreactor[J]. Chemical Industry and Engineering Process, 2015, 34(3):593-607. |
[153] | MU J X, YIN X F, WANG Y G. The claisen-schmidt reaction carried out in microfluidic chips[J]. Synlett, 2005, (20):3163-3165. |
[154] | JOVANOVI? J, REBROV E V, NIJHUIS T A, et al. Phase-transfer catalysis in segmented flow in a microchannel:fluidic control of selectivity and productivity[J]. Industrial & Engineering Chemistry Research, 2010, 49(6):2681-2687. |
[155] | 李春林, 解华, 刘娜, 等. 液滴界面可控导入沉淀剂制备单分散均匀微球[J]. 化工学报, 2015, 66(9):3654-3660. LI C L, XIE H, LIU N, et al. Preparation of monodisper microsphere by controlled droplet solidification[J]. CIESC Journal, 2015, 66(9):3654-3660.namic behavior of water droplet impact on microtextured surfaces:the effect of geometrical parameters on anisotropic wetting and the maximum spreading diameter[J]. Langmuir, 2013, 29(4):1129-1138. |
[109] | LI X, MA X, LAN Z. Behavioral patterns of drop impingement onto rigid substrates with a wide range of wettability and different surface temperatures[J]. AlChE Journal, 2009, 55(8):1983-1992. |
[110] | 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8):2745-2751. LIANG C, WANG H, ZHU X, et al. Numerical simulation of droplet impact on surfaces with different wettabilities[J]. Journal of Chemical Industry and Engineering (China), 2013, 64(8):2745-2751. |
[111] | 杨卧龙, 徐进良, 纪献兵. 超亲水多孔表面的小液滴发射行为及动力学特性[J]. 化工学报, 2016, 67(9):3607-3615. YNG W, AXU J, JI X. Ejection profile and kinetics of droplets spreading on superhydrophilic porous surfaces[J]. CIESC Journal, 2016, 67(9):3607-3615. |
[112] | ZHENG Y, MA X, LI Y, et al. Experimental study of falling film evaporation heat transfer on superhydrophilic horizontal-tubes at low spray density[J]. Applied Thermal Engineering, 2017, 111:1548-1556. |
[113] | 周兴东, 马学虎, 兰忠, 等. 冷凝液运动行为强化含有不凝气的蒸汽冷凝过程研究[J]. 高校化学工程学报, 2007, 21(5):740-746. ZHOU X, MA X, ZHOU X, et al. Falling Movement Effect of the Condensate on Condensation Heat Transfer Enhancement in the Presence of Non-condensable Gas[J]. Journal of Chemical Engineering of Chinese Universities (China), 2007, 21(5):740-746. |
[114] | BOREYKO J B, ZHAO Y, CHEN C-H. Planar jumping-drop thermal diodes[J]. Applied Physics Letters, 2011, 99(23):234105. |
[115] | XIAO R, MILJKOVIC N, ENRIGHT R, et al. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer[J]. Scientific Reports, 2013, 3:1988. |
[116] | WEN R, LAN Z, PENG B, et al. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces:Coordination of Surface Properties and Condensing Conditions[J]. ACS Applied Materials and Interfaces, 2017, 9(15):13770-13777. |
[117] | AGAPOV R L, BOREYKO J B, BRIGGS D P, et al. Asymmetric wettability of nanostructures directs Leidenfrost droplets[J]. ACS Nano, 2014, 8(1):860-867. |
[118] | AGAPOV R L, BOREYKO J B, BRIGGS D P, et al. Length scale of Leidenfrost ratchet switches droplet directionality[J]. Nanoscale, 2014, 6(15):9293-9299. |
[119] | MILJKOVIC N, PRESTON D J, ENRIGHT R, et al. Jumping-droplet electrostatic energy harvesting[J]. Applied Physics Letters, 2014, 105(1):013111. |
[120] | 刘旭. 离心场下混合蒸气滴状冷凝特性的研究[D]. 大连:大连理工大学, 2017. LIU X. Study of Dropwise Condensation Characteristics of Steam with non-condensable gas in Centrifugal Field[D]. Dalian:Dalian University of Technology, 2017. |
[121] | 潘朝群, 邓先和. 错流型超重力旋转填料床中液滴的运动模型[J]. 化工学报, 2003, 54(7):918-922. PAN C, DENG X. Motion model of droplet in cross-rotating packed bed[J]. CIESC Journal, 2003, 54(7):918-922. |
[122] | 王振宁. 电子产品的喷墨印刷制造工艺与质量性能研究-压电式喷墨液滴形成与撞击过程的研究[D]. 无锡, 江南大学, 2010. WANG Z. Research on manufacture process and quality of inkjet printing of electronic products-Research on formation and spreading of piezoelectric inkjet droplets[D]. Wuxi:Jiangnan University, 2010 |
[123] | KANNANGARA D, ZHANG H, SHEN W. Liquid-paper interactions during liquid drop impact and recoil on paper surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006, 280(1):203-215. |
[124] | PARK H, CARR W W, ZHU J, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2003, 49(10):2461-2471. |
[125] | BOUKHALFA H H, MASSINON M, BELHAMRA M, et al. Contribution of spray droplet pinning fragmentation to canopy retention[J]. Crop Protection, 2014, 56:91-97. |
[126] | ANDRADE R, SKURTYS O, OSORIO F. Experimental study of drop impacts and spreading on epicarps:effect of fluid properties[J]. Journal of Food Engineering, 2012, 109(3):430-437. |
[127] | VAIKUNTANATHAN V, KANNAN R, SIVAKUMAR D. Impact of water drops onto the junction of a hydrophobic texture and a hydrophilic smooth surface[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2010, 369(1-3):65-74. |
[128] | 钟香梅. 典型靶标作物叶表面对农药液滴吸附特性的研究[D]. 吉林:吉林大学, 2015. ZHONG X. Study on Adsorption Characteristics of Pesticide Droplets on Leaf Surface of the Typical Target Crops[D]. Jilin:Jilin University, 2015 |
[129] | SONG M, JU J, LUO S. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant[J]. Science Advances 2017, 3(3):e1602188. |
[130] | 龚欣, 刘海峰, 李伟锋, 等. 气流式雾化过程的有限随机分裂模型[J]. 化工学报, 2005, 56(5):786-790. GONG X, LIU H, LI W, et al. Finite stochastic breakup model of air blast atomization process[J] CIESC Journal, 2005, 56(5):786-790. |
[131] | 王树众, 昝元峰, 李慧君, 等. 水平油气两相流中液滴分布的衰减系数[J]. 化工学报, 2004, 55(3):481-484. WANG S, ZAN X, LI H, et al. Decay coefficient of droplet spatial distribution in horizontal oil/gas pipeline[J]. CIESC Journal, 2004, 55(3):481-484. |
[132] | CHENG W L, PENG Y H, CHEN H, et al. Experimental investigation on the heat transfer characteristics of vacuum spray flash evaporation cooling[J]. International Journal of Heat and Mass Transfer, 2016, 102:233-240. |
[133] | ZHOU Z-F, CHEN B, WANG R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70:96-104. |
[134] | SHUI L, EIJKEL J C T, VAN DEN BERG A. Multiphase flow in microfluidic systems-Control and applications of droplets and interfaces[J]. Advances in Colloid and Interface Science, 2007, 133(1):35-49. |
[135] | SONG H, CHEN D L, ISMAGILOV R F. Reactions in Droplets in Microfluidic Channels[J]. Angewandte Chemie, 2006, 45(44):7336-7356. |
[136] | WEN H, YU Y, ZHU G, et al. A droplet microchip with substance exchange capability for the developmental study of C. elegans[J]. Lab on a chip, 2015, 15(8):1905-1911. |
[137] | WANG K, WANG Y J, CHEN G G, et al. Enhancement of Mixing and Mass Transfer Performance with a Microstructure Minireactor for Controllable Preparation of CaCO3 Nanoparticles[J]. Industrial and Engineering Chemistry Research, 2007, 46(19):6092-6098. |
[138] | YAN Y, BOEY D, LI T N, et al. Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics[J]. Biosensors and Bioelectronics, 2016, 77:428-434. |
[139] | 魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64(2):517-523. WEI L, ZHU C, FU T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2):517-523. |
[140] | 王凯, 易诗婷, 周倩倩, 等. 微通道内纳米颗粒对液滴聚并的影响规律[J]. 化工学报, 2016, 67(2):469-475. WANG K, YI T, ZHOU Q, et al. Effect of nano-particles on droplet coalescence in microchannel device[J]. CIESC Journal, 2016, 67(2):469-475. |
[141] | GERDTS C J, VALENTINA T, YADAV M K, et al. Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization[J]. Angewandte Chemie International Edition, 2006, 45(48):8156-8160. |
[142] | NAJAH M, CALBRIX R, MAHENDRA-WIJAYA I, et al. Droplet-Based Microfluidics Platform for Ultra-High-Throughput Bioprospecting of Cellulolytic Microorganisms[J]. Chemistry and Biology, 2014, 21(12):1722-1732. |
[143] | TAN Y C, YAO L H, LEE A P. Microfluidic sorting of droplets by size[J]. Microfluidics and Nanofluidics, 2008, 4(4):343-348. |
[144] | HUH D, BAHNG J H,, LING Y, et al. Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification[J]. Analytical Chemistry, 2007, 79(4):1369-1376. |
[145] | LEMAN M, ABOUAKIL F, GRIFFITHS A D, et al. Droplet-based microfluidics at the femtolitre scale[J]. Lab on a chip, 2015, 15(3):753-765. |
[146] | TAO Y, ROTEM A, ZHANG H, et al. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics[J]. Lab on a chip, 2015, 15(19):3934-3940. |
[147] | ZHENG B, ROACH L S, ISMAGILOV R F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets[J]. Journal of the American Chemical Society, 2003, 125(37):11170. |
[148] | 朱丽娜, 祝莹, 方群. 基于微流控技术的蛋白质结晶及其筛选方法的研究进展[J]. 高等学校化学学报, 2014, 35(1):1-11. ZHU L, ZHU Y, FANG Q. Recent Progress of Microfluidic Techniques for Protein Crystallization and Screening[J]. Chemical Journal of Chinese Universities(China), 2014, 35(1):1-11. |
[149] | SONG H, TICE J D, ISMAGILOV R F. A microfluidic system for controlling reaction networks in time[J]. Angewandte Chemie, 2003, 115(7):792-796. |
[150] | 肖志良, 张博. 基于液滴技术的微流控芯片实验室及其应用[J]. 色谱, 2011, 29(10):949-956. XIAO Z, ZHANG B. Droplet microfluidics:technologies and applications[J]. Chinese journal of chromatography, 2011, 29(10):949-956. |
[151] | BAROUD C N, GALLAIRE F, DANGLA R. Dynamics of microfluidic droplets[J]. Lab on a chip, 2010, 10(16):2032-2045. |
[152] | 张吉松, 刘国涛, 王凯等.微通道内传递对液液分散过程的影响规律[J]. 化工学报, 2015, 66(8):2940-2946. ZHANG J, LIU G, WANG K et al. Effect of transfer on liquid-liquid dispersion in microchannels[J] CIESC Journal, 2015, 66(8):2940-2946. |
[153] | 赵述芳, 白琳, 付宇航等. 液滴流微反应器的基础研究及其应用[J]. 化工进展, 2015, 34(3):593-607. ZHAO S, BAI L, FU Y. Fundamental research and applications of droplet-based microreactor[J]. Chemical Industry and Engineering Process, 2015, 34(3):593-607. |
[154] | MU J X, YIN X F, WANG Y G. The Claisen-Schmidt Reaction Carried Out in Microfluidic Chips[J]. Synlett, 2005, 2005(20):3163-3165. |
[155] | JOVANOVI? J, REBROV E V, NIJHUIS T A, et al. Phase-Transfer Catalysis in Segmented Flow in a Microchannel:Fluidic Control of Selectivity and Productivity[J]. Industrial & Engineering Chemistry Research, 2010, 49(6):2681-2687. |
[156] | 李春林, 解华, 刘娜等. 液滴界面可控导入沉淀剂制备单分散均匀微球[J]. 化工学报, 2015, 66(9):3654-3660. LI C, XIE H, LIU N, et al. Preparation of monodisper microsphere by controlled droplet solidification[J]. CIESC Journal, 2015, 66(9):3654-3660. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[7] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[8] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||