化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1858-1867.DOI: 10.11949/j.issn.0438-1157.20181245
收稿日期:
2018-10-22
修回日期:
2019-02-21
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
蓝兴英
作者简介:
<named-content content-type="corresp-name">苏武</named-content>(1993—),男,博士研究生,<email>suwucup@163.com</email>|蓝兴英(1977—),女,博士,教授,<email>lanxy@cup.edu.cn</email>
基金资助:
Wu SU(),Xiaogang SHI,Yingya WU,Jinsen GAO,Xingying LAN()
Received:
2018-10-22
Revised:
2019-02-21
Online:
2019-05-05
Published:
2019-05-05
Contact:
Xingying LAN
摘要:
对浆态床反应器中乙炔加氢制乙烯过程进行了模拟研究,采用TFM-PBM耦合方法描述浆态床内气相与浆态相的流动,并耦合乙炔加氢反应动力学建立流动-反应综合模型。通过小试实验对该模型进行验证,并将验证后的模型应用于浆态床中试装置中内构件作用机制与操作条件影响的模拟分析。结果表明,在浆态床反应器放大时,可通过设置竖管内构件,以破碎气泡,抑制气相径向运动,使乙炔加氢过程均匀、充分地进行。乙炔加氢制乙烯过程与气相停留时间和反应温度密切相关,在反应器放大中需严格控制温度,并可通过改变反应器内液位高度实现对气相停留时间的调控,从而可在保证乙炔充分转化的同时获得更高的乙烯选择性。
中图分类号:
苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed[J]. CIESC Journal, 2019, 70(5): 1858-1867.
项目 | 催化剂量/kg | 催化剂浓度/%(vol) | 气体流量/(m3/h) | 入口H2:C2H2 (vol.) | 压力/kPa | 温度/℃ |
---|---|---|---|---|---|---|
小试装置 | 0.002 | 2.4 | 0.09 | 4:01 | 101 | 150 |
中试装置 | 13 | 2 | 165, 300 | 4.45:1 | 450 | 123, 140 |
表1 操作条件
Table 1 Equipment parameters and operating conditions
项目 | 催化剂量/kg | 催化剂浓度/%(vol) | 气体流量/(m3/h) | 入口H2:C2H2 (vol.) | 压力/kPa | 温度/℃ |
---|---|---|---|---|---|---|
小试装置 | 0.002 | 2.4 | 0.09 | 4:01 | 101 | 150 |
中试装置 | 13 | 2 | 165, 300 | 4.45:1 | 450 | 123, 140 |
项目 | 网格数/万 | 床层平均气含率 | 乙炔转化率/% | 乙烯选择性/% |
---|---|---|---|---|
小试装置[border:border-top:solid;] | 0.54 | 0.112 | 93.49 | 97.42 |
1.15 | 0.118 | 93.08 | 95.13 | |
3.56 | 0.120 | 93.36 | 95.75 | |
中试装置 | 4.5 | 0.211 | 97.84 | 91.42 |
24 | 0.203 | 99.43 | 85.88 | |
34 | 0.207 | 99.65 | 89.60 |
表2 网格无关性
Table 2 Mesh independency
项目 | 网格数/万 | 床层平均气含率 | 乙炔转化率/% | 乙烯选择性/% |
---|---|---|---|---|
小试装置[border:border-top:solid;] | 0.54 | 0.112 | 93.49 | 97.42 |
1.15 | 0.118 | 93.08 | 95.13 | |
3.56 | 0.120 | 93.36 | 95.75 | |
中试装置 | 4.5 | 0.211 | 97.84 | 91.42 |
24 | 0.203 | 99.43 | 85.88 | |
34 | 0.207 | 99.65 | 89.60 |
项目 | 床层整体气含率 | C2H2转化率/% | C2H4选择性/% |
---|---|---|---|
实验结果 | 0.125 | 100 | 95.51 |
模拟结果 | 0.118 | 93.08 | 95.13 |
表3 小试模拟结果与实验数据对比
Table 3 Comparisons between simulation results and experimental data in lab-scale equipment
项目 | 床层整体气含率 | C2H2转化率/% | C2H4选择性/% |
---|---|---|---|
实验结果 | 0.125 | 100 | 95.51 |
模拟结果 | 0.118 | 93.08 | 95.13 |
项目 | 工况1 | 工况2 | ||
---|---|---|---|---|
实验结果 | 模拟结果 | 实验结果 | 模拟结果 | |
温度/℃ | 140 | 123 | ||
气体流量/(m3/h) | 300 | 165 | ||
床层平均气含率 | 0.19 | 0.20 | — | 0.12 |
C2H2转化率/% | 98.71 | 99.43 | 98.34 | 90.91 |
C2H4选择性/% | 91.04 | 85.88 | 92.14 | 85.24 |
表4 中试模拟结果与实验数据对比
Table 4 Comparisons between simulation results and experimental data in bench-scale equipment
项目 | 工况1 | 工况2 | ||
---|---|---|---|---|
实验结果 | 模拟结果 | 实验结果 | 模拟结果 | |
温度/℃ | 140 | 123 | ||
气体流量/(m3/h) | 300 | 165 | ||
床层平均气含率 | 0.19 | 0.20 | — | 0.12 |
C2H2转化率/% | 98.71 | 99.43 | 98.34 | 90.91 |
C2H4选择性/% | 91.04 | 85.88 | 92.14 | 85.24 |
项目 | C2H2转化率/% | C2H4选择性/% |
---|---|---|
工况1 | 99.43 | 85.88 |
工况3 | 99.99 | 69.49 |
表5 出口乙炔转化率及乙烯选择性
Table 5 Conversion of C2H2 and selectivity of C2H4 at outlet
项目 | C2H2转化率/% | C2H4选择性/% |
---|---|---|
工况1 | 99.43 | 85.88 |
工况3 | 99.99 | 69.49 |
1 | 段东红, 刘世斌, 李一兵, 等 . 一种乙炔加氢制乙烯的浆态床工艺及其装置: 102489225A[P]. 2011-12-10. |
Duan D H , Liu S B , Li Y B , et al . A slurry bed reactor for the selective hydrogenation of acetylene: 102489225A[P]. 2011-12-10. | |
2 | 陈艳君, 陈吉祥 . 乙炔选择加氢催化剂研究进展[J]. 化学工业与工程, 2017, 34(4): 18-26. |
Chen Y J , Chen J X . Advances in catalysts for selective hydrogenation of acetylene[J]. Chemical Industry and Engineering, 2017, 34(4): 18-26. | |
3 | 张东平, 王功华 . 乙炔加氢反应器的模拟与分析[J]. 石油化工, 2003, 32(5): 414-417. |
Zhang D P , Wang G H . Simulation and analysis of reactor for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2003, 32(5): 414-417. | |
4 | Borodzinski A , Cybulski A . The kinetic model of hydrogenation of acetylene–ethylene mixtures over palladium surface covered by carbonaceous deposits[J]. Applied Catalysis A: General, 2000, 198(1/2): 51-66. |
5 | Sarkany A . Formation of C4 oligomers in hydrogenation of acetylene over Pd/Al2O3 and Pd/TiO2 catalysts[J]. Reaction Kinetics and Catalysis Letters, 2001, 74(2): 299-307. |
6 | Edvinsson R K , Holmgren A M , Irandoust S . Liquid-phase hydrogenation of acetylene in a monolithic catalyst reactor[J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 94-100. |
7 | Ruta M , Laurenczy G , Dyson P J , et al . Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions[J]. The Journal of Physical Chemistry C, 2008, 112(46): 17814-17819-. |
8 | Herrmann T , Rößmann L , Lucas M , et al . High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene[J]. Chemical Communications, 2011, 47(45): 12310-12312. |
9 | Shitova N B , Shlyapin D A , Afonasenko T N , et al . Liquid-phase hydrogenation of acetylene on the Pd/sibunit catalyst in the presence of carbon monoxide[J]. Kinetics and Catalysis, 2011, 52(2): 251-257. |
10 | 余海鹏, 史雪君, 刘周恩, 等 . 用于乙炔选择性加氢制乙烯的浆态床反应器及反应系统: 104826558A[P]. 2015-08-05. |
Yu H P , Shi X J , Liu Z E , et al . A slurry bed reactor and reaction system for the selective hydrogenation of acetylene: 104826558A[P]. 2015-08-05. | |
11 | Hou R J , Wang T F , Lan X C . Enhanced selectivity in the hydrogenation of acetylene due to the addition of a liquid phase as a selective solvent[J]. Industrial & Engineering Chemistry Research, 2013, 52(37): 13305-13312. |
12 | Hou R J , Lan X C , Wang T F . Selective hydrogenation of acetylene on Pd/SiO2 in bulk liquid phase: a comparison with solid catalyst with ionic liquid layer (SCILL)[J]. Catalysis Today, 2015, 251: 47-52. |
13 | 余牛杰 . 浆态床高浓度乙炔选择加氢合成乙烯的研究[D]. 太原: 太原理工大学, 2012. |
Yu N J . Study on the performance of slurry reactor for ethylene synthesis by selective hydrogenation of acetylene[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
14 | Wang T F , Wang J F , Jin Y . Slurry reactors for gas-to-liquid processes: a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847. |
15 | 卢佳 . 浆态床费托合成反应器二维分布模型[D]. 杭州: 浙江大学, 2010. |
Lu J . Two-dimensional model of the slurry bubble column reactor for Fischer-Tropsch synthesis[D]. Hangzhou: Zhejiang University, 2010. | |
16 | Xu L J , Xia Z H , Guo X F , et al . Application of population balance model in the simulation of slurry bubble column[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4922-4930. |
17 | Pan H , Chen X Z , Liang X F , et al . CFD simulations of gas-liquid-solid flow in fluidized bed reactors—a review[J]. Powder Technology, 2016, 299: 235-258. |
18 | Li H , Prakash A . Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column[J]. Powder Technology, 2000, 113(1/2): 158-167. |
19 | Wang T F , Wang J F , Jin Y . Theoretical prediction of flow regime transition in bubble columns by the population balance model[J]. Chemical Engineering Science, 2005, 60(22): 6199-6209. |
20 | Ekambara K , Nandakumar K , Joshi J B . CFD simulation of bubble column reactor using population balance[J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 8505-8516. |
21 | Wang T F , Wang J F , Jin Y . Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models[J]. Industrial & Engineering Chemistry Research, 2005, 44(19): 7540-7549. |
22 | Guo X F , Zhou Q , Li J , et al . Implementation of an improved bubble breakup model for TFM-PBM simulations of gas–liquid flows in bubble columns[J]. Chemical Engineering Science, 2016, 152: 255-266. |
23 | Chen P , Sanyal J , Dudukovic M P . CFD modeling of bubble columns flows: implementation of population balance[J]. Chemical Engineering Science, 2004, 59(22/23): 5201-5207. |
24 | Laborde-Boutet C , Larachi F , Dromard N , et al . CFD simulation of bubble column flows: investigations on turbulence models in RANS approach[J]. Chemical Engineering Science, 2009, 64(21): 4399-4413. |
25 | Tomiyama A . Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4): 369-405. |
26 | Bhole M R , Joshi J B , Ramkrishna D . CFD simulation of bubble columns incorporating population balance modeling[J]. Chemical Engineering Science, 2008, 63(8): 2267-2282. |
27 | Tomiyama A , Tamai H , Zun I , et al . Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. |
28 | Fleischer C , Becker S , Eigenberger G . Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column[J]. Chemical Engineering Science, 1996, 51(10): 1715-1724. |
29 | 邢楚填 . 鼓泡床反应器实验研究及CFD-PBM耦合模型数值模拟[D]. 北京: 清华大学, 2014. |
Xing C T . Experimental study and numerical simulation of bubble column with a CFD-PBM coupled model[D]. Beijing: Tsinghua University, 2014. | |
30 | Luo H , Svendsen H F . Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
31 | Luo H . Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim: Norwegian University of Science and Technology, 1993. |
32 | 王功华 . 乙炔加氢动力学研究及反应器模拟计算[D]. 北京: 北京化工大学, 2003. |
Wang G H . Simulation and kinetic study of hydrogenation acetylene of acetylene [D]. Beijing: Beijing University of Chemical Technology, 2014. | |
33 | Kumar S B , Moslemian D , Duduković M P . Gas‐holdup measurements in bubble columns using computed tomography[J]. AIChE Journal, 1997, 43(6): 1414-1425. |
34 | Chen P , Sanyal J , Duduković M P . Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4): 1085-1101. |
35 | Chen P , Duduković M P , Sanyal J . Three‐dimensional simulation of bubble column flows with bubble coalescence and breakup[J]. AIChE Journal, 2005, 51(3): 696-712. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[7] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[10] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[11] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[12] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[13] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[14] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[15] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||