化工学报 ›› 2020, Vol. 71 ›› Issue (3): 903-913.DOI: 10.11949/0438-1157.20191157
陈蓓秋1,林春香1,2,3,4(),刘以凡1,3,4,吕源财1,3,4,刘明华1,3,4
收稿日期:
2019-10-10
修回日期:
2019-12-24
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
林春香
基金资助:
Beiqiu CHEN1,Chunxiang LIN1,2,3,4(),Yifan LIU1,3,4,Yuancai LYU1,3,4,Minghua LIU1,3,4
Received:
2019-10-10
Revised:
2019-12-24
Online:
2020-03-05
Published:
2020-03-05
Contact:
Chunxiang LIN
摘要:
纳米纤维素因其优异的性能和独特的结构在很多领域都受到了关注,其制备和应用已成为相关领域的研究热点。目前纳米纤维素的制备方法众多,但依然面临着较大的挑战。离子液体因其对木质纤维素优良的溶解性能及可回收性,在纳米纤维素制备中展现了较大的潜力。基于此,综述了离子液体在纳米纤维素制备方面的应用进展,重点介绍了离子液体作为预处理手段在纳米纤维素制备方面的应用现状,以及作为溶剂和催化剂直接水解制备纳米纤维素方面的研究进展,并对制备过程中离子液体的回收情况进行了简单概述。
中图分类号:
陈蓓秋, 林春香, 刘以凡, 吕源财, 刘明华. 离子液体在纳米纤维素制备中的应用进展[J]. 化工学报, 2020, 71(3): 903-913.
Beiqiu CHEN, Chunxiang LIN, Yifan LIU, Yuancai LYU, Minghua LIU. Application of ionic liquid in preparation of nanocellulose[J]. CIESC Journal, 2020, 71(3): 903-913.
1 | 邹竹帆, 杨翔皓, 王慧, 等. 酸水解法制备纤维素纳米晶体的研究进展[J]. 中国造纸, 2019, 38(3): 61-69. |
Zou Z F, Yang X H, Wang H, et al. Advance in preparation of cellulose nanocrystals by acid hydrolysis[J]. China Pulp & Paper, 2019, 38(3): 61-69. | |
2 | Chen L H, Zhu J Y, Baez C, et al. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids[J]. Green Chemistry, 2016, 18(13): 3835-3843. |
3 | Huang Y B, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chemistry, 2013, 15(5): 1095-1111. |
4 | 陈理恒. 基于酸处理的木质纤维酶水解及纳米纤维素特性的研究[D]. 广州: 华南理工大学, 2016. |
Chen L H. Study on enzymatic hydrolysis of wood fiber and properties of nanocellulose based on acid treatment[D]. Guangzhou: South China University of Technology, 2016. | |
5 | Chen W S, Yu H P, Liu Y X, et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers, 2011, 83(4): 1804-1811. |
6 | 魏莉, 白盼星, 张思航, 等. 纯物理法制备高长径比纤维素纳米纤维的研究[J]. 现代化工, 2017, 37(2): 70-73+75. |
Wei L, Bai P X, Zhang S H, et al. Preparation of cellulose nanofibers with high aspect ratio by pure physical method[J]. Modern Chemical Industry, 2017, 37(2): 70-73+75. | |
7 | Carrillo C A, Laine J, Rojas O J. Microemulsion systems for fiber deconstruction into cellulose nanofibrils[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22622-22627. |
8 | Zhou H F, Zhu J Y, Gleisner R, et al. Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bioethanol and lignosulfonate[J]. Holzforschung, 2016, 70(1): 21-30. |
9 | 莫代忠. 酶解法制备纯纳米纤维素[D]. 广州: 华南理工大学, 2016. |
Mo D Z. Preparation of pure nanocellulose by enzymatic hydrolysis[D]. Guangzhou: South China University of Technology, 2016. | |
10 | Wang W X, Mozuch M D, Sabo R C, et al. Endoglucanase post-milling treatment for producing cellulose nanofibers from bleached eucalyptus fibers by a supermasscolloider[J]. Cellulose, 2016, 23(3): 1859-1870. |
11 | Paakko M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules, 2007, 8(6): 1934-1941. |
12 | 申玲玲. TEMPO氧化改性漂白针叶浆及制备纳米纤维素气凝胶微球的研究[D]. 南京: 南京林业大学, 2017. |
Shen L L. TEMPO-mediated oxidation of bleached softwood pulp and preparation of nanofiber based aerogel microsphere[D]. Nanjing: Nanjing Forestry University, 2017. | |
13 | 付俊俊, 田彦, 陶劲松. 两种方法制备羧基化纳米纤维素及其性能[J]. 造纸科学与技术, 2018, 37(2): 19-24+42. |
Fu J J, Tian Y, Tao J S. Preparation of the carboxylated cellulose nanocrystals by two different methods[J]. Paper Science & Technology, 2018, 37(2): 19-24+42. | |
14 | Isogai A, Saito T, Fukuzum H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85. |
15 | Mao J, Osorio-Madrazo A, Laborie M P. Preparation of cellulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction efficiency and whiskers attributes[J]. Cellulose, 2013, 20(4): 1829-1840. |
16 | Tan X Y, Abd Hamid S B, Lai CW. Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis[J]. Biomass and Bioenergy, 2015, 81(1): 584-591. |
17 | Sadeghifar H, Filpponen I, Clarke S P, et al. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface[J]. Journal of Materials Science, 2011, 46(22): 7344-7355. |
18 | Novo L P, Bras J, García A, et al. A study of the production of cellulose nanocrystals through subcritical water hydrolysis[J]. Industrial Crops and Products, 2016, 93(1): 88-95. |
19 | Novo L P, Bras J, García A, et al. Subcritical water: a method for green production of cellulose nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2839-2846. |
20 | Kyle S, Jessop Z M, Al-Sabah A, et al. Characterization of pulp derived nanocellulose hydrogels using AVAP® technology[J]. Carbohydrate Polymers, 2018, 1989(1): 270-280. |
21 | 杜海顺, 刘超, 张苗苗, 等. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462. |
Du H S, Liu C, Zhang M M, et al. Preparation of industrialization status of nanocellulose[J]. Progress in Chemistry, 2018, 30(4): 448-462. | |
22 | 刘宝友, 张佩文. 离子液体的进展——绿色制备及在环境修复中的应用研究[J]. 有机化学, 2018, 38(12): 3176-3188. |
Liu B Y, Zhang P W. Progress of ionic liquids — green preparation and application research in environmental remediation[J]. Chinese Journal of Organic Chemistry, 2018, 38(12): 3176-3188. | |
23 | 李晓严, 刘鑫玉, 郭蔚. 离子液体法溶解纤维素制备碳纤维[J]. 功能材料, 2019, 50(7): 7172-7175+7181. |
Li X Y, Liu X Y, Guo W. Preparation carbon fibers from cellulose by ionic liquid method[J]. Journal of Functional Materials, 2019, 50(7): 7172-7175+7181. | |
24 | Polaskova M, Cermak R, Verney V, et al. Preparation of microfibers from wood/ionic liquid solutions[J]. Carbohydrate Polymers, 2013, 92(1): 214-217. |
25 | Xiao W W, Wang Y, Xia S Q, et al. The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment[J]. Carbohydrate Polymers, 2012, 87(3): 2019-2023. |
26 | Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
27 | Iguchi M, Aida T M, Watanabe M, et al. Dissolution and recovery of cellulose from 1-butyl-3-methylimidazolium chloride in presence of water[J]. Carbohydrate Polymers, 2013, 92(1): 651-658. |
28 | 许凤, 陈阳雷, 游婷婷, 等. 纤维素溶解机理研究述评[J]. 林业工程学报, 2019, 4(1): 1-7. |
Xu F, Chen Y L, You T T, et al. Research progress on mechanism of cellulose dissolution[J]. Journal of Forestry Engineering, 2019, 4(1): 1-7. | |
29 | Amarasekara A S, Owereh O S. Hydrolysis and decomposition of cellulose in Brönsted acidic ionic liquids under mild conditions[J]. Industrial & Engineering Chemistry Research, 2009, 48(22): 10152-10155. |
30 | Dufresne A. Nanocellulose: a new ageless bionanomaterial[J]. Materials Today, 2013, 16(6): 220-227. |
31 | Sant’Ana da Silva A, Lee S, Endo T, et al. Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac])[J]. Bioresource Technology, 2011, 102(22): 10505-10509. |
32 | Moniruzzaman M, Ono T. Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment[J]. Bioresource Technology, 2013, 127(1): 132-137. |
33 | Li J H, Wei X Y, Wang Q H, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization[J]. Carbohydrate Polymers, 2012, 90(4): 1609-1613. |
34 | Financie R, Moniruzzaman M, Uemura Y. Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment[J]. Biochemical Engineering Journal, 2016, 110(1): 1-7. |
35 | Chen Q Y, Endo T, Wang Q Y. Characterization of bamboo after ionic liquid-H2O pretreatment for the pyrolysis process[J]. Bioresources, 2015, 10(2): 2797-2808. |
36 | Zhang Y T, Du H B, Qian X H, et al. Ionic liquid-water mixtures: enhanced K-w for efficient cellulosic biomass conversion[J]. Energy & Fuels, 2010, 24(4): 2410-2417. |
37 | 曹菲, 赵鑫, 胡英成, 等. 基于离子液体的椰壳纤维纳米纤维素的制备与表征[J]. 林产化学与工业, 2017, 37(5): 139-145. |
Cao F, Zhao X, Hu Y C, et al. Preparation and characterization of nanocellulose from coconut husk fibers based on ionic liquids[J]. Chemistry and Industry of Forest Products, 2017, 37(5): 139-145. | |
38 | Eksiler K, Andou Y, Yilmaz F, et al. Dynamically controlled fibrillation under combination of ionic liquid with mechanical grinding[J]. Journal of Applied Polymer Science, 2017, 134(7): 1-7. |
39 | Wang Y H, Wei X Y, Li J H, et al. Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization[J]. Industrial Crops and Products, 2017, 104(1): 237-241. |
40 | Wang Y H, Wei X Y, Li J H, et al. Study on nanocellulose by high pressure homogenization in homogeneous isolation[J]. Fibers and Polymers, 2015, 16(3): 572-578. |
41 | Ninomiya K, Abe M, Tsukegi T, et al. Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: application to esterified bagasse/polypropylene composites[J]. Carbohydrate Polymers, 2018, 182(1): 8-14. |
42 | Lazko J, Sénéchal T, Landercy N, et al. Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction[J]. Cellulose, 2014, 21(6): 4195-4207. |
43 | Pang Z Q, Wang P Y, Dong C H. Ultrasonic pretreatment of cellulose in ionic liquid for efficient preparation of cellulose nanocrystals[J]. Cellulose, 2018, 25(12): 7053-7064. |
44 | 董翠华, 王佩玉, 崔毅斌, 等. 一种在[Amim]Cl体系中制备纳米纤维素的方法:106835784B[P]. 2018-02-23. |
Dong C H, Wang P Y, Cui Y B, et al. A method for preparing nanocellulose in [Amim] Cl system: 106835784B[P]. 2018-02-23. | |
45 | 熊开峰, 陈嘉川, 庞志强, 等. 一种在[Emim]OAc体系中制备纳米纤维素的方法:106674357A[P]. 2017-05-17. |
Xiong K F, Chen J C, Pang Z Q, et al. A method for preparing nanocellulose in [Emim]OAc system:106674357A[P]. 2017-05-17. | |
46 | 熊开峰, 董翠华, 王佩玉, 等. 一种在[Bmim]Cl体系中制备纳米纤维素的方法: 106800604A[P]. 2017-06-06. |
Xiong K F, Dong C H, Wang P Y, et al. A method for preparing nanocellulose in [Bmim]Cl system: 106800604A[P]. 2017-06-06. | |
47 | Li C Z, Zhao Z B. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid[J]. Advanced Synthesis & Catalysis, 2007, 349(11/12): 1847 - 1850. |
48 | 李昌志, 王爱琴, 张涛. 离子液体介质中纤维素资源转化研究进展[J]. 化工学报, 2013, 64(1): 182-197. |
Li C Z, Wang A Q, Zhang T. Progress of conversion of cellulose resource in ionic liquids[J]. CIESC Journal, 2013, 64(1): 182-197. | |
49 | Miao J J, Yu Y Q, Jiang Z M, et al. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid[J]. Cellulose, 2016, 23(2): 1209-1219. |
50 | Mao J, Heck B, Reiter G, et al. Cellulose nanocrystals production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) — mediated hydrolysis[J]. Carbohydrate Polymers, 2015, 117(1): 443-451. |
51 | 杨桂花, 刘昭祥, 和铭, 等. 一种利用[Bmin]HSO4体系制备纤维素纳米晶体的方法: 108774288A[P]. 2018-11-09. |
Yang G H, Liu Z X, He M, et al. A method for preparing cellulose nanocrystals in [Bmim]HSO4 system:108774288A[P]. 2018-11-09. | |
52 | Man Z, Muhammad N, Sarwono A, et al. Preparation of cellulose nanocrystals using an ionic liquid[J]. Journal of Polymers and the Environment, 2011, 19(3): 726-731. |
53 | Wang N, Ding N, Cheng R S. Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups[J]. Polymer, 2007, 48(12): 3486-3493. |
54 | Radlein D, Piskorz J, Scott D. Fast pyrolysis of natural polysaccharides as a potential industrial process[J]. Journal of Analytical and Applied Pyrolysis, 1991, 19(1): 41-63. |
55 | 陈孝云, 陆东芳, 陈星, 等. 一种应用离子液体催化水解制备纳米纤维素的方法: 103469662B[P]. 2015-08-12. |
Chen X Y, Lu D F, Chen X, et al. A method for preparing nanocellulose by catalytic hydrolysis of ionic liquid: 103469662B[P]. 2015-08-12. | |
56 | Hamid S B A, Amin M A, Ali M E. Zeolite supported ionic liquid catalyst for the synthesis of nanocellulose from palm tree biomass[J]. Advanced Materials Research, 2014, 925(1): 52-56. |
57 | 胡学建, 李强, 季更生, 等. 一种桑纤维来源的纳米微晶纤维素的制备方法: 109467608A[P]. 2019-03-15. |
Hu X J, Li Q, Ji G S, et al. A method for preparing cellulose nanocrystal from mulberry leaf fiber: 109467608A[P]. 2019-03-15. | |
58 | Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications[J]. Applied Catalysis A: General, 2010, 373(1/2): 1-56. |
59 | Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate[J]. Green Chemistry, 2009, 11(5): 646-655. |
60 | Sun N, Rodriguez H, Rahman M, et al. Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass[J]. Chemical Communications, 2011, 47(5): 1405-1421. |
61 | Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-) cellulose[J]. Bioresource Technology, 2009, 100(9): 2580-2587. |
62 | Isik M, Sardon H, Mecerreyes D. Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials[J]. International Journal of Molecular Sciences, 2014, 15(7): 11922-11940. |
63 | Abushammala H, Krossing I, Laborie M P. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood[J]. Carbohydrate Polymers, 2015, 134(1): 609-616. |
64 | Tan X Y, Lai C W, Hamid S B A. Facile preparation of highly crystalline nanocellulose by using ionic liquid[J]. Advanced Materials Research, 2015, 1087(1): 106-110. |
65 | Iskak N A M, Julkapli N M, Hamid S B A. Understanding the effect of synthesis parameters on the catalytic ionic liquid hydrolysis process of cellulose nanocrystals[J]. Cellulose, 2017, 24(6): 2469-2481. |
66 | Grząbka-Zasadzińska A, Skrzypczak A, Borysiak S. The influence of the cation type of ionic liquid on the production of nanocrystalline cellulose and mechanical properties of chitosan-based biocomposites[J]. Cellulose, 2019, 26(8): 4827-4840. |
67 | Mallakpour S, Rafiee Z. Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology(Ⅰ)[J]. Journal of Polymers & the Environment, 2011, 19(2): 447-484. |
68 | Schafer T, Rodrigues C M, Afonso C A M, et al. Selective recovery of solutes from ionic liquids by pervaporation—a novel approach for purification and green processing[J]. Chemical Communications, 2001, 17(17): 1622-1623. |
69 | Scurto A M, Aki S N V K, Brennecke J F. Carbon dioxide induced separation of ionic liquids and water[J]. Chemical Communications, 2003, 9(5): 572-573. |
70 | Deng Y F, Long T, Zhang D L, et al. Phase diagram of [Amim]Cl plus salt aqueous biphasic systems and its application for [Amim]Cl recovery[J]. Journal of Chemical & Engineering Data, 2009, 54(9): 2470-2473. |
71 | Qi X H, Li L Y, Tan T F, et al. Adsorption of 1-butyl-3-methylimidazolium chloride ionic liquid by functional carbon microspheres from hydrothermal carbonization of cellulose[J]. Environmental Science & Technology, 2013, 47(6): 2792-2798. |
72 | 巩桂芬, 李莹莹, 李威弘, 等. 1-烯丙基-3-甲基咪唑氯盐[Amim]Cl的回收[J]. 化学与粘合, 2013, 35(1): 12-14. |
Gong G F, Li Y Y, Li W H, et al. Recovery of 1-propenyl-3-methyl imidazolium chloride [Amim]Cl[J]. Chemistry and Adhesion, 2013, 35(1): 12-14. | |
73 | Wu B, Liu W, Zhang Y, et al. Do we understand the recyclability of ionic liquids[J]. Chemistry—A European Journal, 2009, 15(8): 1804-1810. |
74 | Mai N L, Ahn K, Koo Y M. Methods for recovery of ionic liquids—a review[J]. Process Biochemistry, 2014, 49(5): 872-881. |
75 | Haerens K, van Deuren S, et al. Challenges for recycling ionic liquids by using pressure driven membrane processes[J]. Green Chemistry,2010, 12(12): 2182-2188. |
76 | Wang J F, Luo J Q, Zhang X P, et al. Concentration of ionic liquids by nanofiltration for recycling: filtration behavior and modeling[J]. Separation and Purification Technology, 2016, 165(1): 18-26. |
77 | 刘燕, 夏天天, 孙位仕, 等. 电渗析-真空膜蒸馏集成膜法回收离子液体[J]. 化工学报, 2018, 69(9): 3905-3913. |
Liu Y, Xia T T, Sun W S, et al. Electrodialysis-vacuum membrane distillation integrated process to concentrate ionic liquids[J]. CIESC Journal, 2018, 69(9): 3905-3913. | |
78 | 聂毅, 王均凤, 张振磊, 等. 离子液体回收循环利用的研究进展与趋势[J]. 化工进展, 2019, 38(1): 100-110. |
Nie Y, Wang J F, Zhang Z L, et al. Trends and research progresses on the recycling of ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 100-110. | |
79 | Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731):28-29. |
80 | Wu B, Zhang Y M, Wang H P, et al. Temperature dependence of phase behavior for ternary systems composed of ionic liquid + sucrose + water[J]. The Journal of Physical Chemistry B, 2008, 112(41): 13163-13165. |
81 | Neves C M S S, Freire M G, Coutinho J A P. Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts[J]. RSC Advances, 2012, 2(29): 10882-10890. |
82 | Gutowski K E, Broker G A, Willauer H D, et al. Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations[J]. Journal of the American Chemical Society, 2003, 125(22): 6632-6633. |
83 | Abu-Eishah S I. Ionic liquids recycling for reuse[M]//Ionic Liquids – Classes and Properties. London: INTECH Open Access Publisher, 2011: 240-272. |
84 | Phanthong P, Karnjanakom S, Reubroycharoen P, et al. A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid[J]. Cellulose, 2017, 24(5): 2083-2093. |
85 | Anjos O, Campos M G, Ruiz P C, et al. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey[J]. Food Chemistry, 2015, 169(1): 218-223. |
86 | Huang J, Hou S N, Chen R Y. Ionic liquid-assisted fabrication of nanocellulose from cotton linter by high pressure homogenization[J]. Bioresources, 2019, 14(4): 7805-7820. |
87 | 王均凤, 聂毅, 王斌琦, 等. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846. |
Wang J F, Nie Y, Wang B Q, et al. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[6] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[7] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[8] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[14] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||