化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2109-2117.DOI: 10.11949/0438-1157.20191459
张雨1(),花榕1(),寇晓康2,刘付平1,孔杰1,张峰1,何非凡1,冯宇1
收稿日期:
2019-12-02
修回日期:
2020-03-01
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
花榕
作者简介:
张雨(1995—),女,硕士研究生,基金资助:
Yu ZHANG1(),Rong HUA1(),Xiaokang KOU2,Fuping LIU1,Jie KONG1,Feng ZHANG1,Feifan HE1,Yu FENG1
Received:
2019-12-02
Revised:
2020-03-01
Online:
2020-05-05
Published:
2020-05-05
Contact:
Rong HUA
摘要:
离子交换法因适于低浓度物质的分离富集而被广泛应用于湿法冶金行业,新型高效吸附材料的合成与应用成为该领域的发展趋势。针对铀矿中伴生铼这一稀缺资源需要同步回收的现状,根据新近研发的氨基改性苯乙烯阴离子交换树脂(LSC-Re),通过静态和动态吸附解吸试验,系统考察了溶液酸度、初始浓度、吸附时间、吸附温度等因素对吸附性能的影响,结果表明:在室温(25℃)下,铼溶液初始浓度为100 mg·L-1,该树脂6 h达到吸附平衡,酸度对该树脂吸附铼的影响不大,树脂在pH=1.5时铀铼分离效果最佳,分离系数可达到41.68;树脂的饱和吸附容量达到129.3 mg·g-1;从热力学和动力学角度分析,吸附过程符合Langmuir吸附等温模型和准二级动力学模型,且吸附是自发的吸热过程。动态吸附解吸试验中,控制溶液流速0.5 ml·min-1,动态饱和吸附容量达到76.17 g·L-1,饱穿比为2.35,用1 mol·L-1 氨水进行解吸铼效果较好,8个树脂床体积可将其解吸完全,由此可见富集倍数接近70倍,具有良好的工业应用前景。
中图分类号:
张雨, 花榕, 寇晓康, 刘付平, 孔杰, 张峰, 何非凡, 冯宇. 氨基改性苯乙烯树脂的合成及其对铼的吸附[J]. 化工学报, 2020, 71(5): 2109-2117.
Yu ZHANG, Rong HUA, Xiaokang KOU, Fuping LIU, Jie KONG, Feng ZHANG, Feifan HE, Yu FENG. Preparation of amino modified styrene-divinylbenzene resin and its adsorption of rhenium[J]. CIESC Journal, 2020, 71(5): 2109-2117.
pH | DRe×102 | DU×102 | βRe/U |
---|---|---|---|
1.5±0.1 | 20.21 | 0.48 | 41.68 |
2.0±0.1 | 33.56 | 1.22 | 27.62 |
2.5±0.1 | 20.02 | 1.79 | 11.17 |
3.0±0.1 | 15.95 | 1.35 | 1.82 |
3.5±0.1 | 21.71 | 2.23 | 9.74 |
4.0±0.1 | 16.9 | 0.91 | 18.61 |
5.0±0.1 | 16.6 | 2.83 | 5.86 |
6.0±0.1 | 19.11 | 2.41 | 7.93 |
表1 LSC-Re树脂在不同pH下铼、铀的分配系数及铼铀分离系数
Table 1 Distribution coefficient and separation coefficient of Re(Ⅶ) and U(Ⅵ) at different pH of LSC-Re resin
pH | DRe×102 | DU×102 | βRe/U |
---|---|---|---|
1.5±0.1 | 20.21 | 0.48 | 41.68 |
2.0±0.1 | 33.56 | 1.22 | 27.62 |
2.5±0.1 | 20.02 | 1.79 | 11.17 |
3.0±0.1 | 15.95 | 1.35 | 1.82 |
3.5±0.1 | 21.71 | 2.23 | 9.74 |
4.0±0.1 | 16.9 | 0.91 | 18.61 |
5.0±0.1 | 16.6 | 2.83 | 5.86 |
6.0±0.1 | 19.11 | 2.41 | 7.93 |
图11 溶液浓度与吸附量的关系曲线
Fig. 11 Relationship between solution concentration and adsorption capacityC0(Re)= 10~500 mg·L-1, pH=2.0, V=20 ml; m(resin)=0.02 g; t=6 h,T=298 K
图13 温度与吸附量的关系曲线(a)及热力学拟合曲线(b)
Fig.13 Relationship between temperature and adsorption capacity (a) and thermodynamic fitting curve (b)C0(Re)=100 mg·L-1, pH=2.0, V=20 ml; m(resin)=0.02 g; t=6 h
1 | Amer A. The hydrometallurgical extraction of rhenium from copper in dustrial wastes[J]. JOM, 2008, 60(8): 52. |
2 | 杨尚磊, 陈艳, 薛小怀, 等. 铼的性质及应用研究现状[J]. 上海金属, 2005, 27(1): 45. |
Yang S L, Chen Y, Xue X H, et al. The property and application research situation of rhenium[J]. Shanghai Metals, 2005, 27(1): 45. | |
3 | Benes V, Boitsov A V, Fazluilin M, et al. Manual of Acid In Situ Uranium Mining Technology[M]. Beijing: Atomic Energy Press, 2003: 289. |
4 | 董海刚, 刘杨, 范兴祥, 等. 铼的回收技术研究进展[J]. 有色金属(冶炼部分), 2013, (6): 30-33. |
Dong H G, Liu Y, Fan X X, et al. Research progress on recovery technology of rhenium[J]. Non-Ferrous Metals (Smelting Part), 2013, (6): 30-33. | |
5 | 彭真, 罗明标, 蒋小辉, 等. 协同萃取法回收地浸采铀工艺树脂中铼[J]. 稀有金属, 2011, 35(6): 922. |
Peng Z, Luo M B, Jiang X H, et al. Synergistic extraction of rhenium from in-situ leach uranium mining technology resin[J]. Chinese Journal of Rare Metals, 2011, 35(6): 922. | |
6 | 潘慧珍, 陈念貽. 胺型萃取剂N-208萃取铼和钼[J]. 原子能科学技术, 1964, (6): 731-733. |
Pan H Z, Chen N T. Extraction of rhenium and molybdenum with amine extractant N-208[J]. Atomic Energy Science and Technology, 1964, (6): 731-733. | |
7 | 宋金如, 龚治湘, 刘淑娟, 等. P350萃淋树脂吸附铼的性能研究及应用[J]. 华东地质学院学报, 2003, 26(3): 274. |
Song J R, Gong Z X, Liu S J, et al. Study and application of adsorption properties of rhenium by P350 extraction resin[J]. Journal of East China Geological Institute, 2003, 26(3): 274. | |
8 | 张俊, 姚林, 吕改芳, 等. D-314树脂动态分离钼铼的研究[J]. 稀有金属, 2010, 34(1): 85. |
Zhang J, Yao L, Lyu G F, et al. Dynamic separation of molybdenum and rhenium by D-314 resin[J]. Chinese Journal of Rare Metals, 2010, 34(1): 85. | |
9 | 井小静, 赵恒勤, 刘红召, 等. 钼精矿焙烧烟尘中回收铼的研究进展[J]. 有色金属(冶炼部分), 2018, (11): 42-46+55. |
Jing X J, Zhao H Q, Liu H Z, et al. Research progress on recovery of rhenium from roasted dust of moly date concentrate[J]. Non-Ferrous Metals (Smelting Part), 2018, (11): 42-46+55. | |
10 | 王华, 刘艳飞, 彭东明, 等. 膜分离技术的研究进展及应用展望[J]. 应用化工, 2013, 42(3): 532-534. |
Wang H, Liu Y F, Peng D M, et al. The development of membrane separation technology and its application prospect[J]. Applied Chemical Industry, 2013, 42(3): 532-534. | |
11 | Xiong Y, Shan W J, Lou Z N, et al. Synergistic extraction of rhenium(Ⅶ) and molybdenum(Ⅵ) with mixtures of bis-(3,5-dimethylhexyl-4-methylhexyl) amine and tributylphosphate[J]. Journal of Phase Equilibria and Diffusion, 2011, 32(3): 193-197. |
12 | 陈波, 包申旭, 张一敏. N235浸渍树脂的制备及对钒的吸附研究[J]. 稀有金属, 2018, 42(8): 891-896. |
Chen B, Bao S X, Zhang Y M. Preparation of N235 impregnated resin and its adsorption for vanadium[J]. Chinese Journal of Rare Metals, 2018, 42(8): 891-896. | |
13 | Tolestof E A, Pan N L, Li P Z. Physical and Chemical Geotechnologies of Development of Gold and Uranium Deposits in Kyzylkum Region[M]. Beijing: Atomic Energy Press, 2003: 124. |
14 | 刘红召, 曹耀华, 高照国. 辉钼矿焙烧烟气淋洗液中铼的富集[J]. 有色金属(冶炼部分), 2009, (6): 39-42. |
Liu H Z, Cao Y H, Gao Z G, et al. Enriching rhenium dissolving in washing water by ion exchange process[J]. Non-Ferrous Metals (Smelting Part), 2009, (6): 39-42. | |
15 | 彭真, 罗明标, 花榕, 等. 从矿石中回收铼的研究进展[J]. 湿法冶金. 2012, 31(2): 76-80. |
Peng Z, Luo M B, Hua R, et al. Research progress on recovery of rhenium from ores[J]. Hydrometallurgy of China, 2012, 31(2): 76-80. | |
16 | 刘洋, 邓丽, 刘莉, 等. D296树脂对高温合金电解液中Re的吸附研究[J]. 稀有金属, 2017, 41(6): 678-683. |
Liu Y, Deng L, Liu L, et al. Adsorption of Re from electrolyte of superalloy by using D296 resin[J]. Chinese Journal of Rare Metals, 2017, 41(6): 678-683. | |
17 | 宿颜涛, 任宇, 王凤菊, 等. 磁性N235萃淋树脂的制备及其对铼的吸附性能研究[J]. 铀矿冶, 2019, 38(1): 29-33. |
Su Y T, Ren Y, Wang F J, et al. Preparation of magnetic N235 extraction resin and its adsorption properties for rhenium[J]. Uranium Mining and Metallurgy, 2019, 38(1): 29-33. | |
18 | 刘红召, 王力军, 张博, 等. 一种弱碱性树脂对淋洗液中铼的静态吸附性能[J]. 稀有金属, 2017, 41(9): 1028-1034. |
Liu H Z, Wang L J, Zhang B, et al. Static adsorption properties of a kind of weak anion ion resin for rhenium in spraying water[J]. Chinese Journal of Rare Metals, 2017, 41(9): 1028-1034. | |
19 | 叶茂松, 俎建华, 王浦银, 等. 弱碱性阴离子交换树脂的合成及其对铼离子的吸附解吸行为研究[J]. 离子交换与吸附, 2015, 31(2): 107-114. |
Ye M S, Zu J H, Wang P Y, et al. Synthesis of weakly basic anion exchange resin and its adsorption and desorption behavior of rhenium ion[J]. Ion Exchange and Adsorption, 2015, 31(2): 107-114. | |
20 | 王晓龙, 俎建华, 韦悦周. AR-01 树脂对铼的吸附和解吸行为[J]. 核化学与放射化学, 2014, 36(4): 204-209. |
Wang X L, Zu J H, Wei Y Z, et al. Adsorption and elution behavior of rhenium using a porous silica-based anion exchanger[J]. Journal of Nuclear and Radiochemistry, 2014, 36(4): 204-209. | |
21 | Chen L F, Yin X B, Yu Q, et al. Rapid and selective capture of perrhenate anion from groundwater by a mesoporous silica-supported anion exchanger[J]. Microporous and Mesoporous Materials, 2018, 274: 155-162. |
22 | Jia M, Cui H, Jin W, et al. Adsorption and separation of rhenium(Ⅶ) using N-ethylimidazolium functionalized strong basic anion exchange resin[J]. Chem. Technol. Biotechnol., 2013, 88: 437-443. |
23 | Miniakhmetov I A, Semenov S A, Musatova V Y, et al. Solvent extraction of rhenium with N-(2-hydroxy-5-nonylbenzyl)-β-hydroxyethylmethylamine[J]. Inorg. Chem., 2013, 58: 1380-1382. |
24 | 张伟强, 马建国, 刘淑娟, 等. 改性石墨烯海绵材料对铀的吸附研究[J]. 东华理工大学学报(自然科学版), 2014, 37(2): 230-235. |
Zhang W Q, Ma J G, Liu S J, et al. Uranium adsorption on functionalized graphene sponge[J]. Journal of East China University of Technology (Natural Science), 2014, 37(2): 230-235. | |
25 | Atia A A, Donia A M, Al-Amrani W A. Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups[J]. Chemical Engineering Journal, 2009, 150(1): 55-62. |
26 | Senturk H B, Ozdes D, Gundogdu A, et al. Removal of phenol from aqueous solutions by adsorption onto organomodified tirebolu bentonite: equilibrium, kinetic and thermodynamic study [J]. Journal of Hazardous Materials, 2009, 172(1): 353-362. |
27 | Zhang J, Xiao H, Yang Y. Preparation of hemicellulose-containing latex and its application as absorbent toward dyes[J]. Journal of Materials Science, 2015, 50(4): 1673-1678. |
28 | 李姜无忌, 朱巧影, 陈立芳, 等. 氧缺陷位MoO3-x的制备及其吸附性能研究[J]. 化工学报, 2019, 70(10): 3956-3966. |
Li J W J, Zhu Q Y, Chen L F, et al. Preparation of oxygen defect vacancies MoO3-x and its adsorption properties[J]. CIESC Journal, 2019, 70(10): 3956-3966. | |
29 | 周鹏, 袁花, 彭平英, 等. 球形聚合单宁-纤维素树脂的制备及吸附性能[J]. 化工学报, 2018, 69(7): 3076-3082. |
Zhou P, Yuan H, Peng P Y, et al. Preparation and adsorption properties of spherical poly(tannin)-cellulose resin[J]. CIESC Journal, 2018, 69(7): 3076-3082. | |
30 | 袁景香, 王超展, 卫引茂. 基于废弃固定化酶再利用的高容量强阳离子交换树脂及其对溶菌酶的吸附性能[J]. 分析化学, 2016, 44(12): 1892-1899. |
Yuan J X, Wang C Z, Wei Y M. High-capacity strong cation exchange resin based on reutilization of an inactivated immobilized enzyme and its adsorption properties for lysozyme[J]. Chinese Journal of Analytical Chemistry, 2016, 44(12): 1892-1899. | |
31 | 陈芳妮, 孙晓君, 魏金枝, 等. 磁性三乙烯四胺氧化石墨烯对Cu2+的吸附行为[J]. 化工学报, 2016, 68(5): 1949-1956. |
Chen F N, Sun X J, Wei J Z, et al. Adsorption behavior of magnetic triethylene tetramine-graphene oxide nanocomposite for Cu2+ [J]. CIESC Journal, 2016, 68(5): 1949-1956. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[6] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[7] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[10] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[11] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[12] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[13] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[14] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[15] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||