化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2230-2239.DOI: 10.11949/0438-1157.20191372
收稿日期:
2019-11-12
修回日期:
2020-01-31
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
刘金彦
作者简介:
郑天宇(1996—),男,硕士研究生,基金资助:
Tianyu ZHENG(),Lu WANG,Jinyan LIU(),Jia WANG
Received:
2019-11-12
Revised:
2020-01-31
Online:
2020-05-05
Published:
2020-05-05
Contact:
Jinyan LIU
摘要:
探究硫酸存在时Q235钢在甲醇中的腐蚀行为,以及离子液体1-丁基-3-甲基咪唑氯盐([Bmim]Cl)对金属表面的缓蚀作用。通过静态失重法、电化学测试、扫描电子显微镜来测定[Bmim]Cl对Q235钢的缓蚀性能。并利用量子化学计算和分子动力学模拟分析[Bmim]Cl分子的缓蚀机理。在甲醇中随着硫酸含量的增加碳钢的腐蚀速率增加。含有59.51 ml 0.05 mol·L-1 H2SO4的甲醇溶液作为腐蚀介质时,随着[Bmim]Cl浓度升高,缓蚀效率逐渐增大,当浓度为0.6 mol·L-1时,缓蚀效率达到最佳值,为90.63%,且[Bmim]Cl是主要控制阳极反应的混合抑制剂,SEM分析表明在含有缓蚀剂溶液中浸泡后的Q235钢表面相对于未加缓蚀剂更加平整。前线轨道分析和Fukui指数都表明,离子液体在碳钢表面的吸附位点分布在咪唑环上,与Fe发生化学吸附。分子动力学模拟结果表明缓蚀剂分子以阳离子[Bmim]+平行吸附于金属表面,阴离子Cl-扩散在溶液中的方式达到缓蚀的效果。理论计算结果与实验结果一致,即[Bmim]Cl在甲醇/硫酸水溶液中对Q235钢具有很好的缓蚀作用,为新型离子液体缓蚀剂研究应用奠定了基础。
中图分类号:
郑天宇, 王璐, 刘金彦, 王佳. 离子液体在甲醇/硫酸介质中对Q235钢表面的缓蚀性能[J]. 化工学报, 2020, 71(5): 2230-2239.
Tianyu ZHENG, Lu WANG, Jinyan LIU, Jia WANG. Corrosion inhibition of ionic liquids on the surface of Q235 steel in methanol/sulfuric acid medium[J]. CIESC Journal, 2020, 71(5): 2230-2239.
Vsulphuric acid/ml | Cmethanol/(mol·L-1) | v/(g·(m2·h)-1) |
---|---|---|
0 | 24.69 | — |
19.03 | 20.00 | 0.76 |
39.27 | 15.00 | 0.91 |
59.51 | 10.00 | 1.30 |
79.76 | 5.00 | 1.59 |
100.00 | 0 | 3.29 |
表1 加入不同体积的0.05 mol·L-1 H2SO4后对Q235钢在甲醇中的腐蚀速率
Table 1 Corrosion rate of Q235 steel in methanol after adding 0.05 mol·L-1 H2SO4
Vsulphuric acid/ml | Cmethanol/(mol·L-1) | v/(g·(m2·h)-1) |
---|---|---|
0 | 24.69 | — |
19.03 | 20.00 | 0.76 |
39.27 | 15.00 | 0.91 |
59.51 | 10.00 | 1.30 |
79.76 | 5.00 | 1.59 |
100.00 | 0 | 3.29 |
C/(mol·L-1) | W/g | v/(g·(m2·h)-1) | η1/% |
---|---|---|---|
blank | 0.194 | 1.59 | — |
0.05 | 0.075 | 0.61 | 61.43 |
0.1 | 0.061 | 0.49 | 68.85 |
0.2 | 0.05 | 0.41 | 74.30 |
0.4 | 0.039 | 0.32 | 79.81 |
0.6 | 0.018 | 0.15 | 90.63 |
0.8 | 0.083 | 0.68 | 57.21 |
表2 不同浓度[Bmim]Cl对Q235钢的静态失重数据
Table 2 Static mass-loss parameters of Q235 steel with different concentrations of [Bmim]Cl
C/(mol·L-1) | W/g | v/(g·(m2·h)-1) | η1/% |
---|---|---|---|
blank | 0.194 | 1.59 | — |
0.05 | 0.075 | 0.61 | 61.43 |
0.1 | 0.061 | 0.49 | 68.85 |
0.2 | 0.05 | 0.41 | 74.30 |
0.4 | 0.039 | 0.32 | 79.81 |
0.6 | 0.018 | 0.15 | 90.63 |
0.8 | 0.083 | 0.68 | 57.21 |
C/(mol·L-1) | Ecorr/mV | Icorr/(μA·cm-2) | βa/(mV·dec-1) | βc/(mV·dec-1) | η2/% |
---|---|---|---|---|---|
blank | -526.38 | 121.33 | 144.63 | 67.65 | — |
0.05 | -523.97 | 50.58 | 154.86 | 132.37 | 58.31 |
0.1 | -497.11 | 40.01 | 140.62 | 142.95 | 67.03 |
0.2 | -491.24 | 37.71 | 106.49 | 102.88 | 68.90 |
0.4 | -485.06 | 28.93 | 106.76 | 92.89 | 76.16 |
0.6 | -472.23 | 18.13 | 82.87 | 90.58 | 85.06 |
0.8 | -507.03 | 38.69 | 117.64 | 120.67 | 68.11 |
表3 Q235钢在不同[Bmim]Cl浓度下的极化曲线拟合参数
Table 3 Polarization parameters for Q235 steel with different concentrations of [Bmim]Cl
C/(mol·L-1) | Ecorr/mV | Icorr/(μA·cm-2) | βa/(mV·dec-1) | βc/(mV·dec-1) | η2/% |
---|---|---|---|---|---|
blank | -526.38 | 121.33 | 144.63 | 67.65 | — |
0.05 | -523.97 | 50.58 | 154.86 | 132.37 | 58.31 |
0.1 | -497.11 | 40.01 | 140.62 | 142.95 | 67.03 |
0.2 | -491.24 | 37.71 | 106.49 | 102.88 | 68.90 |
0.4 | -485.06 | 28.93 | 106.76 | 92.89 | 76.16 |
0.6 | -472.23 | 18.13 | 82.87 | 90.58 | 85.06 |
0.8 | -507.03 | 38.69 | 117.64 | 120.67 | 68.11 |
图3 不同浓度的[Bmim]Cl对Q235的Nyquist图(a)、Bode图(b)和相位角图(c)
Fig.3 Nyquist plots(a), Bode plots(b), and phase angle plots (c) for Q235 steel with different concentrations of [Bmim]Cl
C/ (mol·L-1) | Rs/ (Ω·cm-2) | Rp/ (Ω·cm-2) | n | CPE/ (μF·cm-2) | χ2 | η3/% |
---|---|---|---|---|---|---|
blank | 28.35 | 157.41 | 0.80 | 222 | 4.65×10-3 | — |
0.05 | 21.92 | 329.99 | 0.73 | 201 | 9.41×10-3 | 52.30 |
0.1 | 18.64 | 564.60 | 0.75 | 186 | 2.13×10-3 | 72.12 |
0.2 | 15.37 | 667.38 | 0.76 | 178 | 1.43×10-3 | 76.41 |
0.4 | 11.89 | 737.54 | 0.71 | 159 | 7.17×10-3 | 78.66 |
0.6 | 9.74 | 1052.90 | 0.76 | 143 | 2.24×10-3 | 85.05 |
0.8 | 7.45 | 462.14 | 0.72 | 195 | 5.15×10-3 | 65.94 |
表4 不同浓度的[Bmim]Cl对Q235钢的阻抗谱拟合参数
Table 4 EIS parameters for Q235 steel with different concentrations of [Bmim]Cl
C/ (mol·L-1) | Rs/ (Ω·cm-2) | Rp/ (Ω·cm-2) | n | CPE/ (μF·cm-2) | χ2 | η3/% |
---|---|---|---|---|---|---|
blank | 28.35 | 157.41 | 0.80 | 222 | 4.65×10-3 | — |
0.05 | 21.92 | 329.99 | 0.73 | 201 | 9.41×10-3 | 52.30 |
0.1 | 18.64 | 564.60 | 0.75 | 186 | 2.13×10-3 | 72.12 |
0.2 | 15.37 | 667.38 | 0.76 | 178 | 1.43×10-3 | 76.41 |
0.4 | 11.89 | 737.54 | 0.71 | 159 | 7.17×10-3 | 78.66 |
0.6 | 9.74 | 1052.90 | 0.76 | 143 | 2.24×10-3 | 85.05 |
0.8 | 7.45 | 462.14 | 0.72 | 195 | 5.15×10-3 | 65.94 |
Molecule | EHOMO/eV | ELUMO/eV | ?E①/eV | ?E1②/eV | ?E2③/eV |
---|---|---|---|---|---|
[Bmim]+ | -8.08 | -3.18 | 4.90 | 4.63 | 7.83 |
Fe | -7.81 | -0.25 | — | — | — |
表5 [Bmim]+的量子化学计算参数
Table 5 Quantum chemical parameters for [Bmim]+
Molecule | EHOMO/eV | ELUMO/eV | ?E①/eV | ?E1②/eV | ?E2③/eV |
---|---|---|---|---|---|
[Bmim]+ | -8.08 | -3.18 | 4.90 | 4.63 | 7.83 |
Fe | -7.81 | -0.25 | — | — | — |
Atom | N(1) | C(2) | C(3) | C(4) | N(5) | C(6) | C(7) | C(8) | C(9) | C(10) |
---|---|---|---|---|---|---|---|---|---|---|
f(r)- | 0.092 | 0.187 | 0.079 | 0.082 | 0.092 | 0.032 | 0.019 | 0.006 | 0.008 | 0.008 |
f(r)+ | 0.046 | 0.144 | 0.158 | 0.170 | 0.045 | 0.023 | 0.017 | 0.007 | 0.011 | 0.009 |
表6 由Hirshfeld电荷分布计算得到[Bmim]+的Fukui指数
Table 6 Fukui index of [Bmim]+ calculated by Hirshfeld charge distribution
Atom | N(1) | C(2) | C(3) | C(4) | N(5) | C(6) | C(7) | C(8) | C(9) | C(10) |
---|---|---|---|---|---|---|---|---|---|---|
f(r)- | 0.092 | 0.187 | 0.079 | 0.082 | 0.092 | 0.032 | 0.019 | 0.006 | 0.008 | 0.008 |
f(r)+ | 0.046 | 0.144 | 0.158 | 0.170 | 0.045 | 0.023 | 0.017 | 0.007 | 0.011 | 0.009 |
System | Etotal/(kcal·mol-1) | Esurface/solution/(kcal·mol-1) | Einhibitor/solution/(kcal·mol-1) | Esolution/(kcal·mol-1) | Eadsorption/(kcal·mol-1) |
---|---|---|---|---|---|
Fe(110) | -4368.342 | -4156.534 | -3720.335 | -3617.749 | -109.222 |
Fe2O3(110) | -3611.302 | -3494.727 | -3683.005 | -3646.258 | -79.828 |
表7 [Bmim]Cl在甲醇/硫酸水溶液中不同表面上的吸附能
Table 7 Adsorption energy of [Bmim]Cl on different surfaces in methanol/sulfuric acid aqueous solutions
System | Etotal/(kcal·mol-1) | Esurface/solution/(kcal·mol-1) | Einhibitor/solution/(kcal·mol-1) | Esolution/(kcal·mol-1) | Eadsorption/(kcal·mol-1) |
---|---|---|---|---|---|
Fe(110) | -4368.342 | -4156.534 | -3720.335 | -3617.749 | -109.222 |
Fe2O3(110) | -3611.302 | -3494.727 | -3683.005 | -3646.258 | -79.828 |
1 | 张娟利, 黄勇, 张新庄, 等. 低比例甲醇汽油对金属的腐蚀研究[J]. 表面技术, 2016, 45(8): 34-39. |
Zhang J L, Huang Y, Zhang X Z, et al. Corrosion of low proportional methanol gasoline on metal[J]. Surface Technology, 2016, 45(8): 34-39. | |
2 | 高延敏, 徐永祥, 吴维. 有机溶剂的腐蚀研究进展[J]. 腐蚀科学与防护技术, 2002, 14(5): 280-283. |
Gao Y M, Xu Y X, Wu W. Progress in research of corrosion in organic solvents[J]. Corrsion Science and Technology Protection, 2002, 14(5): 280-283. | |
3 | Singh V B, Gutpa A. Microstructural and corrosion studies of 9Cr-1Mo steel in acidic methanol solutions[J]. Indian Journal of Chemical Technology, 2005, 12(3): 347-355. |
4 | Crousier J P, Crousier J, Dubusc M, et al. Behavior of nickel in methanol water sulfuric acid solution[J]. Materials Chemistry and Physics, 1986, 14(6): 501-512. |
5 | Singh V B, Ray M. Corrosion studies of Ni-free austenitic stainless steel in methanol containing H2SO4, HCl and LiCl[J]. Indian Journal of Chemical Technology, 2007, 14(5): 488-493. |
6 | Armand M, Endres F, Macfarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629. |
7 | Corrales-Luna M, Manh T L, Romero-Romod M, et al. 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media[J]. Corrosion Science, 2019, 153: 85-99. |
8 | Yang D P, Ye Y W, Su Y. Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel[J]. Journal of Cleaner Production, 2019, 229: 180-192. |
9 | 段腾龙, 陈旭, 任帅. 盐酸介质中咪唑离子液体对铜的缓蚀作用[J]. 材料科学与工程学报, 2017, 35(2): 296-300. |
Duan T L, Chen X, Ren S. Corrosion inhibitor of imidazolium ionic liquid on copper in HCl solution[J]. Journal of Materials Science and Engineering, 2017, 35(2): 296-300. | |
10 | 张光华, 董秋辰, 张万斌, 等. 辛烷基二甲基苄基季铵盐离子液体对Q235钢的缓蚀性能[J]. 高等学校化学学报, 2019, 40(1): 130-137. |
Zhang G H, Dong Q C, Zhang W B, et al. Corrosion inhibition of Q235 steel by octyl dimethyl benzyl quaternary ammonium salt ionic liquid[J]. Chemical Journal of Chinese Universities, 2019, 40(1): 130-137. | |
11 | 宋伟伟, 张静, 杜敏. 新型不对称双季铵盐缓蚀剂在HCl 中对 Q235 钢的缓蚀行为[J]. 化学学报, 2011, 69(16): 1851-1857. |
Song W W, Zhang J, Du M. Inhibition performance of novel dissymmetric bisquaternary ammonium salt to Q235 steel in hydrochloric acid[J]. Actachimica Sinica, 2011, 69(16): 1851-1857. | |
12 | Andreatta F, Druart M E, Marin E, et al. Volta potential of clad AA2024 aluminium after exposure to CeCl3 solution[J]. Corrosion Science, 2014, 86: 189-201. |
13 | Liu J Y, Wang Z S, Yang W Y. Inhibition performance of amphoteric fluorinated surfactant and its mixed systems on carbon steel in hydrochloric acid[J]. Journal of Surfactants Detergents, 2016, 19(6): 1297-1304. |
14 | Ghahfarokhi Z S, Bagherzadeh M, Yazdi E G, et al. Surface modification of graphene-coated carbon steel using aromatic molecules for enhancing corrosion resistance: comparison between type of aryl substitution with different spatial situations[J]. Anti-Corrosion Method and Methods, 2018, 65(3): 249-262. |
15 | 吴刚, 郝宁眉, 陈银娟, 等. 新型油酸咪唑啉缓蚀剂的合成及其性能评价[J]. 化工学报, 2013, 64(4): 1485-1492. |
Wu G, Hao N M, Chen Y J, et al. Synthesis of new oleic imidazoline corrosion inhibitors and evaluation of their performance[J]. CIESC Journal, 2013, 64(4): 1485-1492. | |
16 | 冯丽娟, 杨怀玉, 王福会. 碱性溶液中苯甲酸抗坏血酸酯对钢筋的缓蚀行为[J]. 化工学报, 2011, 69(20): 2359-2367. |
Feng L J, Yang H Y, Wang F H. Inhibition behavior of ascorbic benzoate for steel rebar in alkaline solution[J]. CIESC Journal, 2011, 69(20): 2359-2367. | |
17 | Kawai T, Nishihara H, Aramaki A. Corrosion of iron in electrolytic anhydrous methanol solutions containing ferric chloride[J]. Corrosion Science, 1995, 37(5): 823-831. |
18 | Ferreira E S, Giacomelli C, Giacomelli F C, et al. Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel[J]. Materials Chemistry and Physics, 2004, 83(1): 129-134. |
19 | Solmaz R. Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1, 3-dienylideneamino)-1, 3, 4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid[J]. Corrosion Science, 2010, 52(10): 3321-3330. |
20 | Mishra A, Verma C, Lgaz H, et al. Synthesis, characterization and corrosion inhibition studies of N-phenyl-benzamides on the acidic corrosion of mild steel: experimental and computational studies[J]. Journal of Molecular Liquids, 2018, 251: 317-332. |
21 | 马玉聪, 樊保民, 王满曼, 等. 曲唑酮的两步法制备及对碳钢的缓蚀机理[J]. 高等学校化学学报, 2019, 40(8): 1706-1716. |
Ma Y C, Fan B M, Wang M M, et al. Two-step preparation of trazodone and its corrosion inhibition mechanism for carbon steel[J]. Chemical Journal of Chinese Universities, 2019, 40(8): 1706-1716. | |
22 | 赵维, 夏明珠, 雷武, 等. 有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究[J]. 中国腐蚀与防护学报, 2002, 22(4): 26-29. |
Zhao W, Xia M Z, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors[J]. Journal of Chinese Society for Corrosion and Protection, 2002, 22(4): 26-29. | |
23 | Ji Y, Xu B, Gong W N, et al. Corrosion inhibition of a new Schiff base derivative with two pyridine rings on Q235 mild steel in 1.0 M HCl[J]. Journal of the Taiwan Institute Chemical Engineers, 2016, 66: 301-312. |
24 | Muralidharan S, Phani K, Pitchumani S, et al. Polyamino-benzoquinone polymers: a new class of corrosion inhibitors for mild steel[J]. Journal of the Electrochemical Society, 1995, 142(5): 1478-1483. |
25 | 谢斌, 朱莎莎, 李玉龙, 等. O, O’-二(2-苯乙基)二硫代磷酸二乙铵在HCl溶液中对Q235钢的缓蚀性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 366-374. |
Xie B, Zhu S S, Li Y L, et al. Corrosion inhibition performance of diethylammonium O,O’-di(2-phenylethyl) dithiophosphate for Q235 steel in HCl solution[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(4): 366-374. | |
26 | 苏铁军, 李克华, 罗运柏. 盐酸中1-苯胺甲基苯并咪唑对碳钢的缓蚀行为[J]. 应用化学, 2015, 32(4): 464-471. |
Su T J, Li K H, Luo Y B. Inhibition behavior of 1-phenylaminomethylbenzimidazole for mild steel in hydrochloric acid[J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 464-471. | |
27 | Kaya S, Guo L, Kaya C, et al. Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65: 522-529. |
28 | 刘金祥. 咪唑啉衍生物缓蚀性能的理论研究[D]. 青岛: 中国石油大学, 2010. |
Liu J X. Corrosion inhibition performance of imidazoline derivatives investigated by theoretical methods[D]. Qingdao: China University of Petroleum, 2010. | |
29 | Salarvand Z, Amirnasr M, Talebian M, et al. Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies[J]. Corrosion Science, 2017, 114: 113-145. |
30 | 钱建华, 潘晓娜, 张强, 等. 2, 5-二芳基-1, 3, 4-噻二唑衍生物的合成及缓蚀性能[J]. 化工学报, 2015, 66(7): 2737-2748. |
Qian J H, Pan X N, Zhang Q, et al. Synthesis of 2, 5-diaryl-1, 3, 4-thiadiazole corrosion inhibitors and their performance[J]. CIESC Journal, 2015, 66(7): 2737-2748. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[8] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[9] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[14] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[15] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||