化工学报 ›› 2021, Vol. 72 ›› Issue (1): 247-258.DOI: 10.11949/0438-1157.20201065
收稿日期:
2020-07-30
修回日期:
2020-10-26
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
刘晓敏
作者简介:
赵金政(1995—),男,硕士研究生,基金资助:
ZHAO Jinzheng(),ZHOU Guohui,LIU Xiaomin()
Received:
2020-07-30
Revised:
2020-10-26
Online:
2021-01-05
Published:
2021-01-05
Contact:
LIU Xiaomin
摘要:
生物质是自然界中最丰富的可再生资源之一,将生物质转化为高附加值化工产品首先要进行生物质预处理,即利用物理、化学和生物等手段削弱细胞壁分子之间的作用,使生物质更容易降解。离子液体具有诸多优异的物理和化学性质,在众多领域引起了广泛关注,近年来在生物质预处理过程中同样展现出良好的效果。综述了近年来离子液体作为木质纤维素溶剂的主要研究成果,重点介绍了溶解机理方面相关研究。介绍了阴阳离子种类及氢键的影响,总结了木质纤维素与离子液体在分子水平上的相互作用机制,最后探讨了离子液体溶解生物质方面的发展前景。
中图分类号:
赵金政, 周国辉, 刘晓敏. 离子液体在生物质溶解分离中的应用与机理研究[J]. 化工学报, 2021, 72(1): 247-258.
ZHAO Jinzheng, ZHOU Guohui, LIU Xiaomin. Study on application and mechanism of ionic liquids in biomass dissolution and separation[J]. CIESC Journal, 2021, 72(1): 247-258.
1 | Stern P C, Janda K B, Brown M A, et al. Opportunities and insights for reducing fossil fuel consumption by households and organizations[J]. Nature Energy, 2016, 1(5): 267-281. |
2 | Shafiee S, Topal E. When will fossil fuel reserves be diminished?[J]. Energy Policy, 2009, 37(1): 181-189. |
3 | Christensen C H, Rass-Hansen J, Marsden C C, et al. The renewable chemicals industry[J]. ChemSusChem, 2008, 1(4): 283-289. |
4 | Sanderson K. Lignocellulose: a chewy problem[J]. Nature, 2011, 474(7352): S12-S14. |
5 | MacFarlane D R, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2014, 7(1): 232-250. |
6 | Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview[J]. Energy & Environmental Science, 2011, 4(10): 3913-3929. |
7 | Maurya D P, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol[J]. 3 Biotech, 2015, 5(5): 597-609. |
8 | Duque A, Manzanares P, Ballesteros M. Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications[J]. Renewable Energy, 2017, 114: 1427-1441. |
9 | Jonsson L J, Martin C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199: 103-112. |
10 | Zhang Z T, Xie Y J, He X L, et al. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by bacillus coagulans using simultaneous saccharification and fermentation[J]. Scientific Reports, 2016, 6: 2045-2322. |
11 | Nitsos C, Rova U, Christakopoulos P. Organosolv fractionation of softwood biomass for biofuel and biorefinery applications[J]. Energies, 2018, 11(1): 1-23. |
12 | Yoo C G, Pu Y Q, Ragauskas A J. Ionic liquids: promising green solvents for lignocellulosic biomass utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 5: 5-11. |
13 | Pielhop T, Amgarten J, von Rohr P R, et al. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility[J]. Biotechnology for Biofuels, 2016, 9: 152. |
14 | Li H Y, Chen X, Wang C Z, et al. Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: chemical and anatomical changes [J]. Biotechnology for Biofuels, 2016, 9: 1754-6834. |
15 | Hassan S S, Williams G A, Jaiswal A K. Emerging technologies for the pretreatment of lignocellulosic biomass [J]. Bioresource Technology, 2018, 262: 310-318. |
16 | Supasitmongkol S, Styring P. High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid)[J]. Energy & Environmental Science, 2010, 3(12): 1961-1972. |
17 | Zhang X, Zhang X, Dong H, et al. Carbon capture with ionic liquids: overview and progress[J]. Energy & Environmental Science, 2012, 5(5): 6668-6681. |
18 | Wang N, Lee J K. Gas-phase and ionic liquid experimental and computational studies of imidazole acidity and carbon dioxide capture[J]. The Journal of Organic Chemistry, 2019, 84(22): 14593-14601. |
19 | Cesari C, Cingolani A, Teti M, et al. Imidazolium salts of ruthenium anionic cyclopentadienone complexes: ion pair for bifunctional catalysis in ionic liquids[J]. European Journal of Inorganic Chemistry, 2020, 2020(11/12): 1114-1122. |
20 | Lahiri A, Pulletikurthi G, Endres F. A review on the electroless deposition of functional materials in ionic liquids for batteries and catalysis[J]. Frontiers in Chemistry, 2019, 7: 85. |
21 | Karimi B, Tavakolian M, Akbari M, et al. Ionic liquids in asymmetric synthesis: an overall view from reaction media to supported ionic liquid catalysis[J]. ChemCatChem, 2018, 10(15): 3173-3205. |
22 | Yao L, Zhang B J, Jiang H J, et al. Poly(ionic liquid): a new phase in a thermoregulated phase separated catalysis and catalyst recycling system of transition metal-mediated ATRP[J]. Polymers, 2018, 10(4): 347. |
23 | Schroeder K, Cognigni A, Hejazifar M, et al. Surface-active ionic liquids in water: targeted nanoreactors for synthesis, catalysis and materials preparation[J]. Abstracts of Papers of the American Chemical Society, 2018, 255: 136-145. |
24 | Sharma H, Srivastava S. Anion-cation co-operative catalysis by artificial sweetener saccharine-based ionic liquid for sustainable synthesis of 3, 4-dihydropyrano[c]chromenes, 4, 5-dihydropyrano[4, 3-b]pyran and tetrahydrobenzo[b]pyrans in aqueous medium [J]. Advances, 2018, 8(68): 38974-38979. |
25 | Wang Y, Nian Y, Zhang J, et al. MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination[J]. Molecular Catalysis, 2019, 479: 110612. |
26 | Lee Y Y, Edgehouse K, Klemm A, et al. Capsules of reactive ionic liquids for selective capture of carbon dioxide at low concentrations[J]. ACS Appl. Mater. Interfaces, 2020, 12(16): 19184-19193. |
27 | Lv S Y, Li Y L, Yao T, et al. Rhodium-catalyzed direct C—H bond cyanation in ionic liquids[J]. Organic Letters, 2018, 20(16): 4994-4997. |
28 | Chum H L K V, Miller L, Osteryoung R. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt[J]. Journal of the American Chemical Society, 1975, 97: 3264-3265. |
29 | Knipping E, Aucher C, Guirado G, et al. Room temperature ionic liquids versus organic solvents as lithium-oxygen battery electrolytes[J]. New Journal of Chemistry, 2018, 42(6): 4693-4699. |
30 | Dong X J, Wang R G, Jin W W, et al. Electrochemical oxidative dehydrogenative phosphorylation of N-heterocycles with P(O)-H compounds in imidazolium-based ionic liquid[J]. Organic Letters, 2020, 22(8): 3062-3066. |
31 | Luo Q M, Wei P R, Huang Q W, et al. Carbon capsules of ionic liquid for enhanced performance of electrochemical double-layer capacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16707-16714. |
32 | Terasawa N, Asaka K. High-performance PEDOT: PSS/single-walled carbon nanotube/ionic liquid actuators combining electrostatic double-layer and faradaic capacitors[J]. Langmuir, 2016, 32(28): 7210-7218. |
33 | Ganske F, Bornscheuer U T. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids[J]. Organic Letters, 2005, 7(14): 3097-3098. |
34 | Mori M, Garcia R G, Belleville M P, et al. A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support[J]. Catalysis Today, 2005, 104(2/3/4): 313-317. |
35 | Stevens J C, Shi J. Biocatalysis in ionic liquids for lignin valorization: opportunities and recent developments[J]. Biotechnology Advances, 2019, 37(8): 107418. |
36 | Dupont J, Suarez P A. Physico-chemical processes in imidazolium ionic liquids[J]. Physical Chemistry Chemical Physics, 2006, 8(21): 2441-2452. |
37 | Graenacher C. Cellulose solution: US 1943176[P]. 1934. |
38 | Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
39 | Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionic liquid[J]. Biomacromolecules, 2004, 5(2): 266-268. |
40 | Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005, 38(20): 8272-8277. |
41 | Li W Y, Sun N, Stoner B, et al. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin[J]. Green Chemistry, 2011, 13(8): 2038-2047. |
42 | 常聪. MCM-41/Hβ及其改性分子筛催化热解微藻制取生物油实验研究[D]. 青岛: 青岛科技大学, 2013. |
Chang C. Study on catalytic pyrolysis of microalgae to bio-oil with MCM-41/Hβ and its modified molecular sieve catalyst[D]. Qingdao: Qingdao University of Science & Technology, 2013. | |
43 | 高洁, 汤烈贵. 我国纤维素科学发展近况[J]. 纤维素科学与技术, 1993, (1): 1-11. |
Gao J, Tang L G. Recent development of cellulose science in China[J]. Journal of Cellulose Science and Technology, 1993, (1): 1-11. | |
44 | Edgar K J, Buchanan C M, Debenham J S, et al. Advances in cellulose ester performance and application[J]. Progress in Polymer Science, 2001, 26(9): 1605-1688. |
45 | Schmer M R, Vogel K P, Mitchell R B, et al. Net energy of cellulosic ethanol from switchgrass[J]. PNAS, 2008, 105(2): 464-469. |
46 | Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology[J]. Chemistry Letters, 2009, 38(1): 2-7. |
47 | Xu J L, Yao X Q, Xin J Y, et al. An effective two-step ionic liquids method for cornstalk pretreatment [J]. Journal of Chemical Technology and Biotechnology, 2015, 90(11): 2057-2065. |
48 | Yang S Q, Lu X M, Zhang Y Q, et al. Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids[J]. Cellulose, 2018, 25(6): 3241-3254. |
49 | Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids[J]. Cellulose, 2008, 15(1): 59-66. |
50 | Vitz J, Erdmenger T, Haensch C, et al. Extended dissolution studies of cellulose in imidazolium based ionic liquids[J]. Green Chemistry, 2009, 11(3): 417-424. |
51 | Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-)cellulose[J]. Bioresource Technology, 2009, 100(9): 2580-2587. |
52 | Andre M, Loidl J, Laus G, et al. Ionic liquids as advantageous solvents for headspace gas chromatography of compounds with low vapor pressure[J]. Analytical Chemistry, 2005, 77(2): 702-705. |
53 | Zhao H, Baker G A, Song Z Y, et al. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates[J]. Green Chemistry, 2008, 10(6): 696-705. |
54 | Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromolecular Bioscience, 2005, 5(6): 520-525. |
55 | Zhao B, Greiner L, Leitner W. Cellulose solubilities in carboxylate-based ionic liquids[J]. RSC Advances, 2012, 2(6): 2476-2479. |
56 | Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids[J]. Journal of the American Chemical Society, 2005, 127(8): 2398-2399. |
57 | Fukaya Y, Sugimoto A, Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates[J]. Biomacromolecules, 2006, 7(12): 3295-3297. |
58 | Patri A S, Mostofian B, Pu Y Q, et al. A multifunctional cosolvent pair reveals molecular principles of biomass deconstruction[J]. Journal of the American Chemical Society, 2019, 141(32): 12545-12557. |
59 | Zhang C, Kang H L, Li P P, et al. Dual effects of dimethylsulfoxide on cellulose solvating ability of 1-allyl-3-methylimidazolium chloride[J]. Cellulose, 2016, 23(2): 1165-1175. |
60 | Li C Z, Wang Q, Zhao Z K. Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose [J].Green Chemistry, 2008, 10(2): 177-182. |
61 | Xu A R, Wang J J, Wang H Y. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems[J]. Green Chemistry, 2010, 12(2): 268-275. |
62 | Saielli G, Wang Y T. Role of the electrostatic interactions in the stabilization of ionic liquid crystals: insights from coarse-grained MD simulations of an imidazolium model[J]. Journal of Physical Chemistry B, 2016, 120(34): 9152-9160. |
63 | Lesch V, Li Z, Bedrov D, et al. The influence of cations on lithium ion coordination and transport in ionic liquid electrolytes: a MD simulation study[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 382-392. |
64 | Ghosh S, Parui S, Jana B, et al. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation[J]. Journal of Chemical Physics, 2015, 143(12): 125103. |
65 | Zhao Y L, Liu X M, Wang J J, et al. Effects of anionic structure on the dissolution of cellulose in ionic liquids revealed by molecular simulation[J]. Carbohydrate Polymers, 2013, 94(2): 723-730. |
66 | Zhao Y L, Liu X M, Wang J J, et al. Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study[J]. ChemPhysChem, 2012, 13(13): 3126-3133. |
67 | Rabideau B D, Agarwal A, Ismail A E. Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2013, 117(13): 3469-3479. |
68 | Rabideau B D, Agarwal A, Ismail A E. The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids[J]. Journal of Physical Chemistry B, 2014, 118(6): 1621-1629. |
69 | Erdmenger T, Haensch C, Hoogenboom R, et al. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride[J]. Macromolecular Bioscience, 2007, 7(4): 440-445. |
70 | Pinkert A, Marsh K N, Pang S, et al. Ionic liquids and their interaction with cellulose [J]. Chemical Reviews, 2009, 109: 6712-6728. |
71 | Lu B L, Xu A R, Wang J J. Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids[J].Green Chemistry, 2014, 16(3): 1326-1335. |
72 | Elumalai S, Agarwal B, Runge T M, et al. Integrated two-stage chemically processing of rice straw cellulose to butyl levulinate[J]. Carbohydrate Polymers, 2016, 150: 286-298. |
73 | Li Y, Liu X M, Zhang Y Q, et al. Why only ionic liquids with unsaturated heterocyclic cations can dissolve cellulose: a simulation study[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3417-3428. |
74 | Li Y, Liu X M, Zhang S J, et al. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study[J]. Phys. Chem. Chem. Phys., 2015, 17(27): 17894-17905. |
75 | Zhao Y, Liu X, Wang J, et al. Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems[J]. J. Phys. Chem. B, 2013, 117(30): 9042-9049. |
76 | Xu A R, Cao L L, Wang B J, et al. Dissolution behavior of cellulose in IL+DMSO solvent: effect of alkyl length in imidazolium cation on cellulose dissolution[J]. Advances in Materials Science and Engineering, 2015, 2015: 406470. |
77 | Li Y, Wang J J, Liu X M, et al. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects[J]. Chemical Science, 2018, 9(17): 4027-4043. |
78 | Payal R S, Bharath R, Periyasamy G, et al. Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: gas phase and cluster calculations[J]. Journal of Physical Chemistry B, 2012, 116(2): 833-840. |
79 | Ma T, Shen Z S, Li H, et al. Effect of H-bonding on Brønsted acid ionic liquids catalyzed in situ transesterification of wet algae[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4647-4657. |
80 | Kahlen J, Masuch K, Leonhard K. Modelling cellulose solubilities in ionic liquids using COSMO-RS[J]. Green Chemistry, 2010, 12(12): 2172-2181. |
81 | Liu Y R, Thomsen K, Nie Y, et al. Predictive screening of ionic liquids for dissolving cellulose and experimental verification[J]. Green Chemistry, 2016, 18(23): 6246-6254. |
82 | Lee S H, Doherty T V, Linhardt R J, et al. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis[J]. Biotechnology and Bioengineering, 2009, 102(5): 1368-1376. |
83 | Sun S N, Li M F, Yuan T Q, et al. Effect of ionic liquid pretreatment on the structure of hemicelluloses from corncob[J]. Journal of Agricultural and Food Chemistry, 2012, 60(44): 11120-11127. |
84 | Pu Y Q, Jiang N, Ragauskas A J. Ionic liquid as a green solvent for lignin[J]. Journal of Wood Chemistry and Technology, 2007, 27(1): 23-33. |
85 | Tan S S Y, MacFarlane D R, Upfal J, et al. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J]. Green Chemistry, 2009, 11(3): 339-345. |
86 | Anugwom I, Eta V, Maki-Arvela P, et al. The effect of switchable ionic liquid (SIL) treatment on the composition and crystallinity of birch chips (Betula pendula) using a novel alkanol amine-organic superbase-derived SIL[J]. Green Processing and Synthesis, 2014, 3(2): 147-154. |
87 | Brandt-Talbot A, Gschwend F J V, Fennell P S, et al. An economically viable ionic liquid for the fractionation of lignocellulosic biomass[J]. Green Chemistry, 2017, 19(13): 3078-3102. |
88 | Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate[J]. Green Chemistry, 2009, 11(5): 646-655. |
89 | Merino O, Fundora-Galano G, Luque R, et al. Understanding microwave-assisted lignin solubilization in protic ionic liquids with multiaromatic imidazolium cations[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4122-4129. |
90 | Zhu Y, Yan J, Liu C, et al. Modeling interactions between a beta-o-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid[J]. Biopolymers, 2017, 107(8): e23022. |
91 | Hu L F, Peng H, Zhang Y, et al. Insight into the interaction between arabinoxylan and imidazolium acetate-based ionic liquids[J]. Carbohydrate Polymers, 2020, 231: 115699. |
92 | Zubeltzu J, Formoso E, Rezabal E. Lignin solvation by ionic liquids: the role of cation[J]. Journal of Molecular Liquids, 2020, 303: 112588. |
93 | Ji H, Lv P. Mechanistic insights into the lignin dissolution behaviors of a recyclable acid hydrotrope, deep eutectic solvent (DES), and ionic liquid (IL)[J]. Green Chemistry, 2020, 22(4): 1378-1387. |
94 | Liu C, Li Y M, Hou Y. Effects of alkalinity of ionic liquids on the structure of biomass in pretreatment process[J].Wood Science and Technology, 2019, 53(1): 177-189. |
95 | Casas A, Palomar J, Alonso M V, et al. Comparison of lignin and cellulose solubilities in ionic liquids by COSMO-RS analysis and experimental validation[J]. Industrial Crops and Products, 2012, 37(1): 155-163. |
96 | Kim D H, Pu Y, Chandra R P, et al. A novel method for enhanced recovery of lignin from aqueous process streams[J]. Journal of Wood Chemistry and Technology, 2007, 27(3/4): 219-224. |
97 | Wang H T, Yuan T Q, Meng L J, et al. Structural and thermal characterization of lauroylated hemicelluloses synthesized in an ionic liquid[J]. Polymer Degradation and Stability, 2012, 97(11): 2323-2330. |
98 | Lan W, Liu C F, Sun R C. Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction [J]. Journal of Agricultural and Food Chemistry, 2011, 59(16): 8691-8701. |
99 | Li H Y, Chen X, Li Y J, et al. The effect of ionic liquids pretreatment on the distribution and structure of alkali-soluble hemicelluloses from eucalyptus[J]. Separation and Purification Technology, 2018, 191: 364-369. |
100 | Hu L F, Peng H, Xia Q, et al. Effect of ionic liquid pretreatment on the physicochemical properties of hemicellulose from bamboo[J]. Journal of Molecular Structure, 2020, 1210: 128067. |
101 | Liu Q P, Hou X D, Li N, et al. Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass[J]. Green Chemistry, 2012, 14(2): 304-307. |
102 | Yang B, Qin X Y, Hu H C, et al. Using ionic liquid (EmimAc)-water mixture in selective removal of hemicelluloses from a paper-grade bleached hardwood kraft pulp[J]. Cellulose, 2020, 27: 9653-9661. |
103 | Ma X J, Long Y D, Duan C, et al. Facilitate hemicelluloses separation from chemical pulp in ionic liquid/water by xylanase pretreatment[J]. Industrial Crops and Products, 2017, 109: 459-463. |
104 | Froschauer C, Hummel M, Iakovlev M, et al. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems[J]. Biomacromolecules, 2013, 14(6): 1741-1750. |
105 | Xia Q, Peng H, Yuan L, et al. Anionic structural effect on the dissolution of arabinoxylan-rich hemicellulose in 1-butyl-3-methylimidazolium carboxylate-based ionic liquids[J]. RSC Advances, 2020, 10(20): 11643-11651. |
106 | Berglund J, d'Ortoli T A, Vilaplana F, et al. A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility[J]. Plant Journal, 2016, 88(1): 56-70. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[6] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[7] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[8] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[11] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[12] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[13] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[14] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[15] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||