化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5810-5819.DOI: 10.11949/0438-1157.20210634
收稿日期:
2021-05-11
修回日期:
2021-07-08
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
张肖静
作者简介:
张肖静(1986—),女,副教授,基金资助:
Xiaojing ZHANG(),Bingbing MA,Han ZHANG,Denghui WEI,Hongli ZHANG,Hao HU,Zirui ZHAO
Received:
2021-05-11
Revised:
2021-07-08
Online:
2021-11-05
Published:
2021-11-12
Contact:
Xiaojing ZHANG
摘要:
抗生素在世界范围内使用广泛,目前已经在多种废水中检测到了不同种类的抗生素。以磺胺甲唑(SMX)和土霉素(OTC)为代表,研究其对厌氧氨氧化过程的短期(6 h)和长期(22 d)影响。结果表明:在实验浓度中(1、10、100、1000 μg/L),OTC的短期抑制阈值为10 μg/L,将厌氧氨氧化活性由14.6降至12.0 mg/(h·g SS);长期抑制阈值为1000 μg/L,将厌氧氨氧化活性降至11.1 mg/(h·g SS);1~1000 μg/L的SMX对厌氧氨氧化生物膜无显著影响。厌氧氨氧化生物膜对SMX的响应比对OTC的响应更加快速,可以分泌大量的胞外聚合物以抵抗SMX,同时可以诱导反硝化菌降解SMX。OTC导致厌氧氨氧化生物膜的微生物多样性增加,而SMX则促使优势微生物的丰度增加,同时诱导反硝化菌的相对丰度从0.01%最高增加至14.9%,有助于抵抗SMX的抑制。因此,厌氧氨氧化可以处理含有微量SMX的废水,在处理含OTC的废水时,则需要经过长期驯化。
中图分类号:
张肖静,马冰冰,张涵,位登辉,张红丽,胡浩,赵子睿. 厌氧氨氧化工艺处理不同抗生素废水的性能比较[J]. 化工学报, 2021, 72(11): 5810-5819.
Xiaojing ZHANG,Bingbing MA,Han ZHANG,Denghui WEI,Hongli ZHANG,Hao HU,Zirui ZHAO. Comparison of the performance of Anammox process in the treatment of wastewater from different antibiotics[J]. CIESC Journal, 2021, 72(11): 5810-5819.
样品 | 序列数 | OTU数 | Shannon指数 | ACE指数 | Chao1指数 | Simpson指数 | Candidatus Kuenenia | Denitratisoma |
---|---|---|---|---|---|---|---|---|
OTC0 | 55534 | 581 | 3.55 | 943.4 | 796.1 | 0.077 | 16.44 | 0.14 |
OTC1 | 72598 | 695 | 3.89 | 1061.8 | 949.4 | 0.074 | 23.43 | 0.1 |
OTC10 | 65062 | 665 | 4.26 | 813.3 | 794.7 | 0.035 | 10.69 | 0.37 |
OTC100 | 76460 | 724 | 3.43 | 943.9 | 915.3 | 0.161 | 37.93 | 1.19 |
OTC1000 | 86537 | 787 | 4.23 | 948.3 | 935.5 | 0.049 | 17.82 | 4.16 |
SMX0 | 82848 | 594 | 3.36 | 729.7 | 737.0 | 0.110 | 13.85 | 0.01 |
SMX1 | 73244 | 698 | 3.83 | 921.1 | 868.5 | 0.066 | 9.43 | 13.89 |
SMX10 | 75556 | 663 | 3.76 | 883.2 | 808.9 | 0.061 | 20.19 | 3.29 |
SMX100 | 64538 | 617 | 3.92 | 832.6 | 904.1 | 0.050 | 14.31 | 14.94 |
SMX1000 | 73652 | 661 | 3.95 | 892.2 | 936.0 | 0.048 | 14.15 | 10.43 |
表1 不同生物膜样品的多样性指数和主要功能微生物的相对丰度
Table 1 The diversity index of different biofilm samples and the relative abundance of main functional microorganisms
样品 | 序列数 | OTU数 | Shannon指数 | ACE指数 | Chao1指数 | Simpson指数 | Candidatus Kuenenia | Denitratisoma |
---|---|---|---|---|---|---|---|---|
OTC0 | 55534 | 581 | 3.55 | 943.4 | 796.1 | 0.077 | 16.44 | 0.14 |
OTC1 | 72598 | 695 | 3.89 | 1061.8 | 949.4 | 0.074 | 23.43 | 0.1 |
OTC10 | 65062 | 665 | 4.26 | 813.3 | 794.7 | 0.035 | 10.69 | 0.37 |
OTC100 | 76460 | 724 | 3.43 | 943.9 | 915.3 | 0.161 | 37.93 | 1.19 |
OTC1000 | 86537 | 787 | 4.23 | 948.3 | 935.5 | 0.049 | 17.82 | 4.16 |
SMX0 | 82848 | 594 | 3.36 | 729.7 | 737.0 | 0.110 | 13.85 | 0.01 |
SMX1 | 73244 | 698 | 3.83 | 921.1 | 868.5 | 0.066 | 9.43 | 13.89 |
SMX10 | 75556 | 663 | 3.76 | 883.2 | 808.9 | 0.061 | 20.19 | 3.29 |
SMX100 | 64538 | 617 | 3.92 | 832.6 | 904.1 | 0.050 | 14.31 | 14.94 |
SMX1000 | 73652 | 661 | 3.95 | 892.2 | 936.0 | 0.048 | 14.15 | 10.43 |
Phylum | Class | Order | Family | Genus | 相对丰度/ % | 序号 | 测序OTU 编号 |
---|---|---|---|---|---|---|---|
Planctomycetes | Brocadiae | Brocadiales | Brocadiaceae | Candidatus Kuenenia | 17.98 | OTU1 | Otu2 |
Proteobacteria | Gammaproteobacteria | Betaproteobacteriales | Rhodocyclaceae | Denitratisoma | 4.57 | OTU2 | Otu5 |
Gammaproteobacteria | Betaproteobacteriales | Nitrosomonadaceae | Nitrosomonas | 4.97 | OTU3 | Otu11 | |
Gammaproteobacteria | Betaproteobacteriales | Burkholderiaceae | Acidovorax | 2.37 | OTU4 | Otu13 | |
Gammaproteobacteria | Betaproteobacteriales | Burkholderiaceae | Ellin6067 | 2.58 | OTU7 | Otu353 | |
Gammaproteobacteria | Betaproteobacteriales | Burkholderiaceae | Limnobacter | 2.4 | OTU8 | Otu354 | |
Alphaproteobacteria | Rhizobiales | Xanthobacteraceae | unclassified Xanthobacteraceae | 3.41 | OTU9 | Otu10529 | |
Patescibacteria | Saccharimonadia | Saccharimonadales | unclassified Saccharimonadales | unclassified Saccharimonadales | 5.21 | OTU12 | Otu10304 |
Acidobacteria | Holophagae | Subgroup_7 | unclassified Subgroup_7 | unclassified Subgroup_7 | 1.69 | OTU14 | Otu4 |
Armatimonadetes | Fimbriimonadia | Fimbriimonadales | Fimbriimonadaceae | unclassified Fimbriimonadaceae | 1.81 | OTU15 | Otu10530 |
Deinococcus- Thermus | Deinococci | Deinococcales | Trueperaceae | Truepera | 2.43 | OTU16 | Otu11498 |
unclassified Bacteria | Acidimicrobiia | Actinomarinales | unclassified Actinomarinales | unclassified Actinomarinales | 2.12 | OTU17 | Otu10305 |
表2 优势OTU(>1%)的生物学分类及相对丰度
Table 2 The taxonomic results and relative abundances of the dominated OTU (>1%)
Phylum | Class | Order | Family | Genus | 相对丰度/ % | 序号 | 测序OTU 编号 |
---|---|---|---|---|---|---|---|
Planctomycetes | Brocadiae | Brocadiales | Brocadiaceae | Candidatus Kuenenia | 17.98 | OTU1 | Otu2 |
Proteobacteria | Gammaproteobacteria | Betaproteobacteriales | Rhodocyclaceae | Denitratisoma | 4.57 | OTU2 | Otu5 |
Gammaproteobacteria | Betaproteobacteriales | Nitrosomonadaceae | Nitrosomonas | 4.97 | OTU3 | Otu11 | |
Gammaproteobacteria | Betaproteobacteriales | Burkholderiaceae | Acidovorax | 2.37 | OTU4 | Otu13 | |
Gammaproteobacteria | Betaproteobacteriales | Burkholderiaceae | Ellin6067 | 2.58 | OTU7 | Otu353 | |
Gammaproteobacteria | Betaproteobacteriales | Burkholderiaceae | Limnobacter | 2.4 | OTU8 | Otu354 | |
Alphaproteobacteria | Rhizobiales | Xanthobacteraceae | unclassified Xanthobacteraceae | 3.41 | OTU9 | Otu10529 | |
Patescibacteria | Saccharimonadia | Saccharimonadales | unclassified Saccharimonadales | unclassified Saccharimonadales | 5.21 | OTU12 | Otu10304 |
Acidobacteria | Holophagae | Subgroup_7 | unclassified Subgroup_7 | unclassified Subgroup_7 | 1.69 | OTU14 | Otu4 |
Armatimonadetes | Fimbriimonadia | Fimbriimonadales | Fimbriimonadaceae | unclassified Fimbriimonadaceae | 1.81 | OTU15 | Otu10530 |
Deinococcus- Thermus | Deinococci | Deinococcales | Trueperaceae | Truepera | 2.43 | OTU16 | Otu11498 |
unclassified Bacteria | Acidimicrobiia | Actinomarinales | unclassified Actinomarinales | unclassified Actinomarinales | 2.12 | OTU17 | Otu10305 |
1 | 杨庆, 杨玉兵, 李健敏, 等. 短程硝化耦合厌氧氨氧化工艺处理低C/N比生活污水[J]. 化工学报, 2018, 69(8): 3635-3642. |
Yang Q, Yang Y B, Li J M, et al. Partial nitrification coupled anaerobic ammonia oxidation process to treat low C/N domestic sewage[J]. CIESC Journal, 2018, 69(8): 3635-3642. | |
2 | Third K A, Sliekers A O, Kuenen J G, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria[J]. Systematic and Applied Microbiology, 2001, 24(4): 588-596. |
3 | 张肖静, 张涵, 周月, 等. 亚硝化-厌氧氨氧化工艺的启动及微生物种群演替规律研究[J]. 轻工学报, 2019, 34(6): 56-63. |
Zhang X J, Zhang H, Zhou Y, et al. Start-up and microbial community shift of partial nitrification-anammox process[J]. Journal of Light Industry, 2019, 34(6): 56-63. | |
4 | Strous M, Kuenen J G, Jetten M S. Key physiology of anaerobic ammonium oxidation[J]. Appl. Environ. Microbiol., 1999, 65(7): 3248-3250. |
5 | 欧阳金波, 陈建, 刘峙嵘, 等. 生物质源多孔碳制备及其对废水中药物吸附研究进展[J]. 化工学报, 2020, 71(12): 5420-5429. |
Ouyang J B, Chen J, Liu Z R, et al. Research progress on preparation of biomass-derived porous carbon and its adsorption of pharmaceuticals in wastewater[J]. CIESC Journal, 2020, 71(12): 5420-5429. | |
6 | Guruge K S, Goswami P, Tanoue R, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways[J]. Science of the Total Environment, 2019, 690: 683-695. |
7 | Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China[J]. Environmental Pollution, 2010, 158(9): 2992-2998. |
8 | Martínez-Carballo E, González-Barreiro C, Scharf S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria[J]. Environmental Pollution, 2007, 148(2): 570-579. |
9 | 吴楠, 乔敏. 土壤环境中四环素类抗生素残留及抗性基因污染的研究进展[J]. 生态毒理学报, 2010, 5(5): 618-627. |
Wu N, Qiao M. Tetracycline residues and tetracycline resistance gene pollution in soil: a review[J]. Asian Journal of Ecotoxicology, 2010, 5(5): 618-627. | |
10 | Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water[J]. Science of the Total Environment, 2009, 407(8): 2711-2723. |
11 | Asha R C, Kumar M. Sulfamethoxazole in poultry wastewater: identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor[J]. Journal of Environmental Science and Health, Part A, 2015, 50(10): 1011-1019. |
12 | Osorio V, Sanchís J, Abad J L, et al. Investigating the formation and toxicity of nitrogen transformation products of diclofenac and sulfamethoxazole in wastewater treatment plants[J]. Journal of Hazardous Materials, 2016, 309: 157-164. |
13 | Hou J, Wang C, Mao D Q, et al. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China[J]. Environmental Science and Pollution Research, 2016, 23(2): 1722-1731. |
14 | Kafaei R, Papari F, Seyedabadi M, et al. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran[J]. Science of the Total Environment, 2018, 627: 703-712. |
15 | 魏瑞成, 葛峰, 陈明, 等. 江苏省畜禽养殖场水环境中四环类抗生素污染研究[J]. 农业环境科学学报, 2010, 29(6): 1205-1210. |
Wei R C, Ge F, Chen M, et al. Pollution of tetracyclines from livestock and poultry farms in aquatic environment in Jiangsu Province, China[J]. Journal of Agro-Environment Science, 2010, 29(6): 1205-1210. | |
16 | 李盟军, 申健, 姚建武, 等. 某规模化猪场废水中抗生素污染特征及生态风险评估[J]. 农业环境科学学报, 2021, 40(4): 884-893, 688. |
Li M J, Shen J, Yao J W, et al. Pollution characteristics and ecological risk assessment of antibiotics in wastewater from a large-scale piggery[J]. Journal of Agro-Environment Science, 2021, 40(4): 884-893, 688. | |
17 | Gui M Y, Chen Q, Ni J R. Effect of sulfamethoxazole on aerobic denitrification by strain Pseudomonas stutzeri PCN-1[J]. Bioresource Technology, 2017, 235: 325-331. |
18 | Katipoglu-Yazan T, Ubay-Cokgor E, Orhon D. Chronic impact of sulfamethoxazole: how does process kinetics relate to metabolic activity and composition of enriched nitrifying microbial culture?[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(6): 1722-1732. |
19 | Zhang Q Q, Chen H, Liu J H, et al. The robustness of ANAMMOX process under the transient oxytetracycline (OTC) shock[J]. Bioresource Technology, 2014, 153: 39-46. |
20 | Wang D B, Tao L J, Yang J N, et al. Understanding the interaction between triclocarban and denitrifiers[J]. Journal of Hazardous Materials, 2021, 401: 123343. |
21 | Zhang N, Zhang X J, Gao A H, et al. Long-term inhibition of the antibiotic oxytetracycline on an upflow low-matrix anammox biofilter[J]. Environmental Engineering Science, 2021, 38(1): 41-49. |
22 | 张茜, 程雅菲, 黄宝成, 等. 含抗生素废水脱氮处理中厌氧氨氧化工艺的应用及作用机制研究进展[J]. 杭州师范大学学报(自然科学版), 2020, 19(4): 398-404. |
Zhang Q, Cheng Y F, Huang B C, et al. Application and mechanism of anammox in nitrogen removal of antibiotic wastewater[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2020, 19(4): 398-404. | |
23 | 李玲玲, 肖向前. 抗生素对污水生物处理系统脱氮性能影响的研究进展[J]. 中国抗生素杂志, 2021, 46(6): 501-508. |
Li L L, Xiao X Q. Advance research on the effects of antibiotics on biological nitrogen removal performance in biological wastewater treatment system[J]. Chinese Journal of Antibiotics, 2021, 46(6): 501-508. | |
24 | Yuan D Q, Wang Y L, Qian X. Variations of internal structure and moisture distribution in activated sludge with stratified extracellular polymeric substances extraction[J]. International Biodeterioration & Biodegradation, 2017, 116: 1-9. |
25 | 王金鹏,赵阳国,胡钰博.磺胺甲唑对海水养殖废水处理过程中抗性细菌及抗性基因的富集作用[J].环境科学, 2021, 42(8): 3791-3798. |
Wang J P, Zhao Y G, Hu Y B. Enrichment of antibiotic resistant bacteria and antibiotic resistant genes by sulfamethoxazole in the biological treatment system of mariculture wastewater[J]. Environmental Science, 2021, 42(8): 3791-3798. | |
26 | Shi Z J, Hu H Y, Shen Y Y, et al. Long-term effects of oxytetracycline (OTC) on the granule-based anammox: process performance and occurrence of antibiotic resistance genes[J]. Biochemical Engineering Journal, 2017, 127: 110-118. |
27 | 严子春, 唐瑞祥, 吴大冰. 有机物对厌氧氨氧化生物膜反应器脱氮效能及微生物群落的影响[J]. 环境科学学报, 2021, 41(4): 1303-1308. |
Yan Z C, Tang R X, Wu D B. Effect of organic matter on nitrogen removal efficiency and microbial community of an anammox biofilm reactor[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1303-1308. | |
28 | Chen A, Chen Y, Ding C, et al. Effects of tetracycline on simultaneous biological wastewater nitrogen and phosphorus removal[J]. RSC Advances, 2015, 5(73): 59326-59334. |
29 | Yu N L, Zhao C K, Ma B R, et al. Impact of ampicillin on the nitrogen removal, microbial community and enzymatic activity of activated sludge[J]. Bioresource Technology, 2019, 272: 337-345. |
30 | Zheng D, Chang Q B, Li Z W, et al. Performance and microbial community of a sequencing batch biofilm reactor treating synthetic mariculture wastewater under long-term exposure to norfloxacin[J]. Bioresource Technology, 2016, 222: 139-147. |
31 | 叶超, 陈毅刚. 抗生素对活性污泥系统运行效果及代谢产物的影响: 以氧氟沙星为例[J]. 环境科技, 2020, 33(4): 29-33. |
Ye C, Chen Y G. The effects of antibiotic on the performance and metabolic activities of activated sludge system—a case study of ofloxacin[J]. Environmental Science and Technology, 2020, 33(4): 29-33. | |
32 | Wang L F, Li Y, Wang L, et al. Responses of biofilm microorganisms from moving bed biofilm reactor to antibiotics exposure: protective role of extracellular polymeric substances[J]. Bioresource Technology, 2018, 254: 268-277. |
33 | Sun Y P, Guan Y T, Zeng D F, et al. Metagenomics-based interpretation of AHLs-mediated quorum sensing in Anammox biofilm reactors for low-strength wastewater treatment[J]. Chemical Engineering Journal, 2018, 344: 42-52. |
34 | Wu L N, Yan Z B, Li J, et al. Low temperature advanced nitrogen and sulfate removal from landfill leachate by nitrite-anammox and sulfate-anammox[J]. Environmental Pollution, 2020, 259: 113763. |
35 | Zhu Y J, Wang Y Y, Jiang X X, et al. Microbial community compositional analysis for membrane bioreactor treating antibiotics containing wastewater[J]. Chemical Engineering Journal, 2017, 325: 300-309. |
36 | Liao X B, Li B X, Zou R S, et al. Antibiotic sulfanilamide biodegradation by acclimated microbial populations[J]. Applied Microbiology and Biotechnology, 2016, 100(5): 2439-2447. |
37 | Luo G, Li B, Li L G, et al. Antibiotic resistance genes and correlations with microbial community and metal resistance genes in full-scale biogas reactors as revealed by metagenomic analysis[J]. Environmental Science & Technology, 2017, 51(7): 4069-4080. |
38 | Wen Q X, Yang L, Zhao Y Q, et al. Insight into effects of antibiotics on reactor performance and evolutions of antibiotic resistance genes and microbial community in a membrane reactor[J]. Chemosphere, 2018, 197: 420-429. |
39 | Mao F, Liu X H, Wu K, et al. Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4[J]. Biodegradation, 2018, 29(2): 129-140. |
40 | 闫雷, 梁斌, 王爱杰, 等. 微生物降解磺胺甲唑的研究进展[J]. 微生物学报, 2020, 60(12): 2747-2762. |
Yan L, Liang B, Wang A J, et al. Progress in microbial degradation of sulfamethoxazole[J]. Acta Microbiologica Sinica, 2020, 60(12): 2747-2762. | |
41 | 马娟, 周猛, 俞小军, 等. 抗生素在污水生物脱氮除磷中的抑制效应[J]. 中国抗生素杂志, 2019, 44(2): 179-185. |
Ma J, Zhou M, Yu X J, et al. Inhibitory effects of antibiotics on biological nitrogen and phosphorus removal in wastewater treatment[J]. Chinese Journal of Antibiotics, 2019, 44(2): 179-185. | |
42 | Katipoglu-Yazan T, Merlin C, Pons M N, et al. Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture[J]. Water Research, 2015, 72: 227-238. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[6] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[7] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[12] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[15] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||