1 |
Constable D J C, Jimenez-Gonzalez C, Henderson R K. Perspective on solvent use in the pharmaceutical industry[J]. Organic Process Research & Development, 2007, 11(11): 133-137.
|
2 |
Welton T. Solvents and sustainable chemistry[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2183): 20150502.
|
3 |
Fisher R. Design of experiments[J]. BMJ, 1936, 1: 554-554.
|
4 |
Gani R, Brignole E A. Molecular design of solvents for liquid extraction based on UNIFAC[J]. Fluid Phase Equilibria, 1983, 13: 331-340.
|
5 |
Gani R, Nielsen B, Fredenslund A. A group contribution approach to computer-aided molecular design[J]. AIChE Journal, 1991, 37: 1318-1332.
|
6 |
Scheffczyk J, Fleitmann L, Schwarz A, et al. COSMO-CAMD: a framework for optimization-based computer-aided molecular design using COSMO-RS[J]. Chemical Engineering Science, 2017, 159: 84-92.
|
7 |
van Dyk B, Nieuwoudt I. Design of solvents for extractive distillation[J]. Industrial & Engineering Chemistry Research, 2000, 39(5): 1423-1429.
|
8 |
Folić M, Adjiman C S, Pistikopoulos E N. The design of solvents for optimal reaction rates[J]. Computer Aided Chemical Engineering, 2004, 18(5): 175-180.
|
9 |
Zhou T, Lyu Z, Qi Z, et al. Robust design of optimal solvents for chemical reactions—a combined experimental and computational strategy[J]. Chemical Engineering Science, 2015, 137: 613-625.
|
10 |
Struebing H, Ganase Z, Karamertzanis P G, et al. Computer-aided molecular design of solvents for accelerated reaction kinetics[J]. Nature Chemistry, 2013, 5(11): 952-957
|
11 |
Liu Q, Zhang L, Liu L, et al. Computer-aided reaction solvent design based on transition state theory and COSMO-SAC[J]. Chemical Engineering Science, 2019, 202: 300-317.
|
12 |
Grant E, Pan Y, Richardson J, et al. Multi-objective computer-aided solvent design for selectivity and rate in reactions[J]. Computer Aided Chemical Engineering, 2018, 44: 2437-2442.
|
13 |
Reichardt C. Solvents and Solvent Effects in Organic Chemistry[M]. 2nd ed. New York, USA: VCH, 1991.
|
14 |
Carlson R, Lundstedt T, Albano C, et al. Screening of suitable solvents in organic-synthesis-strategies for solvent selection[J]. Acta Chem. Scand, 1985, 39(2): 79-91.
|
15 |
Reichardt C, Welton T. Solvents and Solvent Effect in Organic Chemistry[M]. 4th ed. New York, USA: VCH, 2010.
|
16 |
Alam M J O A. Pyrimidine candidate as promising scaffold and their biological evaluation[J]. International Journal of Pharmacology and Pharmaceutical Sciences, 2015, 2(4): 55-69.
|
17 |
Shao Y, Cole A G, Brescia M, et al. Synthesis and SAR studies of trisubstituted purinones as potent and selective adenosine A2A receptor antagonists[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(5): 1399-1402.
|
18 |
Bowers S, Truong A P, Ye M, et al. Design and synthesis of highly selective, orally active Polo-like kinase-2 (Plk-2) inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(9): 2743-2749.
|
19 |
Li X, Chen W, Tian Y, et al. Discovery of novel diarylpyrimidines as potent HIV NNRTIs via a structure-guided core-refining approach[J]. European Journal of Medicinal Chemistry, 2014, 80: 112-121.
|
20 |
Lee M, Rucil T, Hesek D, et al. Regioselective control of the SNAr amination of 5-substituted-2, 4-dichloropyrimidines. Using tertiary amine nucleophiles[J]. The Journal of Organic Chemistry, 2015, 80(15): 7757-7763.
|
21 |
Eyring H. The activated complex in chemical reactions[J]. The Journal of Chemical Physics, 1935, 3(2): 107-115.
|
22 |
Faust A. Ueber das Verhalten des Monochlorphenols von 218° Siedepunkt in der Kalischmelze[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1873, 6(2): 1022-1023.
|
23 |
Picazo E, Houk K N, Garg N K. Computational predictions of substituted benzyne and indolyne regioselectivities[J]. Tetrahedron Letters, 2015, 56(23): 3511-3514.
|
24 |
Kwan E E, Zeng Y, Besser H A, et al. Concerted nucleophilic aromatic substitutions[J]. Nature Chemistry, 2018, 10(9): 917-923.
|
25 |
Frisch M J. Gaussian 09 Rev. D.01[CP]. Wallingford, CT, 2009.
|
26 |
Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J. Chem. Phys., 1989, 90: 2154-2161.
|
27 |
Neese F. The ORCA program system[J]. WIREs Comput. Mol. Sci., 2012, 2: 73-78.
|
28 |
Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
|
29 |
te Velde G, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967.
|
30 |
Chen W, Hsieh C, Yang L, et al. A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9312-9322.
|
31 |
Liu Q, Zhang L, Liu L, et al. OptCAMD: an optimization-based framework and tool for molecular and mixture product design[J]. Computers & Chemical Engineering, 2019, 124: 285-301.
|
32 |
Hsieh C, Sandler S, Lin S. Improvements of COSMO-SAC for vapor-liquid and liquid–liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297: 90-97.
|
33 |
Karunanithi A T, Achenie L E K, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures[J]. Industrial & Engineering Chemistry Research, 2005, 44(13): 4785-4797
|
34 |
Grossmann I E, Viswanathan J, Vecchietti A, et.al GAMS/DICOPT: a discrete continuous optimization package[J]. Math. Methods Appl. Sci., 2001, 24(11): 649-664.
|
35 |
Tawarmalani M, Sahinidis N V. A polyhedral branch-and-cut approach to global optimization[J]. Math. Program, 2005, 103(2): 225-249.
|