化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2436-2447.DOI: 10.11949/0438-1157.20201409
收稿日期:
2020-10-09
修回日期:
2020-12-09
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
许映杰
作者简介:
陈婷婷(1998—),女,硕士研究生,基金资助:
CHEN Tingting(),YIN Jiongting,XU Yingjie()
Received:
2020-10-09
Revised:
2020-12-09
Online:
2021-05-05
Published:
2021-05-05
Contact:
XU Yingjie
摘要:
离子液体(ILs)具有蒸气压低、液程宽、热稳定性好、结构和性质可调节等特点, 作为反应溶剂、模板剂或结构导向剂等在纳米材料制备领域得到了广泛的应用。纳米ZnO在传感器、太阳能电池、光催化和发光二极管等领域具有广泛的应用。总结了近年来ILs在纳米ZnO材料制备中的研究进展, 重点归纳和比较了常规非质子型ILs、质子型ILs、碱性ILs和聚ILs在制备纳米ZnO中的应用,及其调控纳米ZnO形貌、尺寸和性能的作用特点, 并为今后ILs应用于金属纳米材料的制备提出了建议。
中图分类号:
陈婷婷, 尹炯婷, 许映杰. 离子液体在纳米ZnO材料制备中的研究进展[J]. 化工学报, 2021, 72(5): 2436-2447.
CHEN Tingting, YIN Jiongting, XU Yingjie. Research progress of ionic liquids in preparation of ZnO nanomaterials[J]. CIESC Journal, 2021, 72(5): 2436-2447.
1 | Rogers R D. Chemistry: ionic liquids: solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
2 | Shi G L, Zhao H Q, Chen K H, et al. Efficient capture of CO2 from flue gas at high temperature by tunable polyamine-based hybrid ionic liquids[J]. AIChE Journal, 2020, 66(1): e16779. |
3 | 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147. |
Liu J J, Fu X, Xu Y J. Progress on carbon monoxide removal using ionic liquids[J]. CIESC Journal, 2020, 71(1): 138-147. | |
4 | Chen Y, Mu T C. Conversion of CO2 to value-added products mediated by ionic liquids[J]. Green Chemistry, 2019, 21(10): 2544-2574. |
5 | Rouster P, Pavlovic M, Cao T C, et al. Stability of titania nanomaterials dispersed in aqueous solutions of ionic liquids of different alkyl chain lengths[J]. The Journal of Physical Chemistry C, 2019, 123(20): 12966-12974. |
6 | Cui J C, Li Y, Chen D, et al. Ionic liquid-based stimuli-responsive functional materials[J]. Advanced Functional Materials, 2020, 30(50): 2005522. |
7 | Ukidve A, Cu K, Goetz M, et al. Ionic-liquid-based safe adjuvants[J]. Advanced Materials, 2020, 32(46): 2002990. |
8 | Zheng L, Li J, Yu M M, et al. Molecular sizes and antibacterial performance relationships of flexible ionic liquid derivatives[J]. Journal of the American Chemical Society, 2020, 142(47): 20257-20269. |
9 | Bai S, Da P, Li C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019, 571(7764): 245-250. |
10 | Zhu Q G, Yang D X, Liu H Z, et al. Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction[J]. Angewandte Chemie International Edition, 2020, 59(23): 8896-8901. |
11 | Ma L, Haynes C J E, Grommet A B, et al. Coordination cages as permanently porous ionic liquids[J]. Nature Chemistry, 2020, 12(3): 270-275. |
12 | Singh S K, Savoy A W. Ionic liquids synthesis and applications: an overview[J]. Journal of Molecular Liquids, 2020, 297: 112038. |
13 | Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid[J]. Science, 2016, 353(6298): 467-470. |
14 | Makvandi P, Wang C Y, Zare E N, et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects[J]. Advanced Functional Materials, 2020, 30(22): 1910021. |
15 | Benlamri M, Wiltshire B D, Zhang Y, et al. High breakdown strength Schottky diodes made from electrodeposited ZnO for power electronics applications[J]. ACS Appl. Electron. Mater., 2019, 1(1): 13-17. |
16 | Ong C B, Ng L Y, Mohammad A W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 536-551. |
17 | Ren D, Gao J, Pan L F, et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J]. Angewandte Chemie International Edition, 2019, 58(42): 15036-15040. |
18 | Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review[J]. Materials, 2014, 7(4): 2833-2881. |
19 | Richter J, Ruck M. Synthesis and dissolution of metal oxides in ionic liquids and deep eutectic solvents[J]. Molecules, 2019, 25(1): 78. |
20 | Prechtl M H G, Campbell P S. Metal oxide and bimetallic nanoparticles in ionic liquids: synthesis and application in multiphase catalysis[J]. Nanotechnology Reviews, 2013, 2(5): 577-595. |
21 | Abbott A P, Frisch G, Hartley J, et al. Processing of metals and metal oxides using ionic liquids[J]. Green Chemistry, 2011, 13(3): 471-481. |
22 | Casiello M, Catucci L, Fracassi F, et al. ZnO/ionic liquid catalyzed biodiesel production from renewable and waste lipids as feedstocks[J]. Catalysts, 2019, 9(1): 71. |
23 | Kaabeche O N E H, Zouaghi R, Boukhedoua S, et al. A comparative study on photocatalytic degradation of pyridinium - based ionic liquid by TiO2 and ZnO in aqueous solution[J]. International Journal of Chemical Reactor Engineering, 2019, 17(9): 20180253. |
24 | Yu W, Huang L, Yang D, et al. Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer[J]. Journal of Materials Chemistry A, 2015, 3(20): 10660-10665. |
25 | Azaceta E, Idigoras J, Echeberria J, et al. ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(35): 10173. |
26 | Zhang X H, Cui M Q, Nian L, et al. Ionic liquid-modified ZnO-based electron transport layer for inverted organic solar cells[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(15): 12678-12683. |
27 | Alavi-Tabari S A R, Khalilzadeh M A, Karimi-Maleh H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle[J]. Journal of Electroanalytical Chemistry, 2018, 811: 84-88. |
28 | Kaur N, Raj P, Singh A, et al. A facile route to ionic liquids-functionalized ZnO nanorods for the fluorometric sensing of thiabendazole drug[J]. Journal of Molecular Liquids, 2018, 261: 137-145. |
29 | Zaitsau D H, Emel'Yanenko V N, Stange P, et al. Dispersion and hydrogen bonding rule: why the vaporization enthalpies of aprotic ionic liquids are significantly larger than those of protic ionic liquids[J]. Angewandte Chemie International Edition, 2016, 55(38): 11682-11686. |
30 | Greaves T L, Drummond C J. Protic ionic liquids: properties and applications[J]. Chemical Reviews, 2008, 108(1): 206-237. |
31 | Wang H Y, Zhang L M, Wang J J, et al. The first evidence for unilamellar vesicle formation of ionic liquids in aqueous solutions[J]. Chemical Communications, 2013, 49(45): 5222-5224. |
32 | Cherian T, Nunes D R, Dane T G, et al. Supramolecular self-assembly of nanoconfined ionic liquids for fast anisotropic ion transport[J]. Advanced Functional Materials, 2019, 29(49): 1905054. |
33 | Xu Y J, Li T T, Peng C J, et al. Influence of C2-H of imidazolium-based ionic liquids on the interaction and vapor-liquid equilibrium of ethyl acetate + ethanol system: [Bmim]BF4vs [Bmmim]BF4[J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 150827113216002. |
34 | Wang L, Chang L X, Zhao B, et al. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids[J]. Inorganic Chemistry, 2008, 47(5): 1443-1452. |
35 | Rabieh S, Bagheri M. Effect of ionic liquid [C4mim]Cl on morphology of nanosized-zinc oxide[J]. Materials Letters, 2014, 122: 190-192. |
36 | Li X Q, Zhang J, Ju Z Y, et al. Facile synthesis of cellulose/ZnO aerogel with uniform and tunable nanoparticles based on ionic liquid and polyhydric alcohol[J]. ACS Sustainable Chem. Eng., 2018, 6(12): 16248-16254. |
37 | Gao R, Gao S, Wang P, et al. Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism[J]. Sensors and Actuators B: Chemical, 2020, 303: 127085. |
38 | da Trindade L G, Minervino G B, Trench A B, et al. Influence of ionic liquid on the photoelectrochemical properties of ZnO particles[J]. Ceramics International, 2018, 44(9): 10393-10401. |
39 | Sabbaghan M, Shahvelayati A S, Bashtani S E. Synthesis and optical properties of ZnO nanostructures in imidazolium-based ionic liquids[J]. Solid State Sciences, 2012, 14(8): 1191-1195. |
40 | Yavari I, Mahjoub A R, Kowsari E, et al. Synthesis of ZnO nanostructures with controlled morphology and size in ionic liquids[J]. Journal of Nanoparticle Research, 2009, 11(4): 861-868. |
41 | Kowsari E, Abdpour S. In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO[J]. Journal of Solid State Chemistry, 2017, 256: 141-150. |
42 | da Trindade L G, Zanchet L, Trench A B, et al. Flower-like ZnO/ionic liquid composites: structure, morphology, and photocatalytic activity[J]. Ionics, 2019, 25(7): 3197-3210. |
43 | Kawai R S, Yada S, Yoshimura T. Surface adsorption and bulk properties of surfactants in quaternary-ammonium-salt-type amphiphilic monomeric and gemini ionic liquids[J]. Langmuir, 2020, 36(19): 5219-5226. |
44 | Lago S, Francisco M, Arce A, et al. Enhanced oil recovery with the ionic liquid trihexyl(tetradecyl)phosphonium chloride: a phase equilibria study at 75℃[J]. Energy & Fuels, 2013, 27(10): 5806-5810. |
45 | Alammar T, Mudring A V. Sonochemical synthesis of 0D, 1D, and 2D zinc oxide nanostructures in ionic liquids and their photocatalytic activity[J]. ChemSusChem, 2011, 4(12): 1796-1804. |
46 | Goharshadi E K, Abareshi M, Mehrkhah R, et al. Preparation, structural characterization, semiconductor and photoluminescent properties of zinc oxide nanoparticles in a phosphonium-based ionic liquid[J]. Materials Science in Semiconductor Processing, 2011, 14(1): 69-72. |
47 | Das S, Ghosh S. Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis[J]. Dalton Transactions, 2013, 42(5): 1645-1656. |
48 | Zhao S, Zhang Y W, Zhou Y M, et al. Ionic liquid-assisted photochemical synthesis of ZnO/Ag2O heterostructures with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2017, 410: 344-353. |
49 | Meenatchi B, Nandhine Deve K R, Manikandan A, et al. Protic ionic liquid assisted synthesis, structural, optical and magnetic properties of Mn-doped ZnO nanoparticles [J]. Adv. Sci. Eng. Med., 2016, 8(8): 653-659. |
50 | Liu Z, El Abedin S Z, Endres F. Dissolution of zinc oxide in a protic ionic liquid with the 1-methylimidazolium cation and electrodeposition of zinc from ZnO/ionic liquid and ZnO/ionic liquid-water mixtures[J]. Electrochemistry Communications, 2015, 58: 46-50. |
51 | Ogawa T, Takahashi K, Nagarkar S S, et al. Coordination polymer glass from a protic ionic liquid: proton conductivity and mechanical properties as an electrolyte[J]. Chemical Science, 2020, 11(20): 5175-5181. |
52 | Peric B, Sierra J, Martí E, et al. (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids[J]. Journal of Hazardous Materials, 2013, 261: 99-105. |
53 | 张锁江, 徐春明, 吕兴梅. 离子液体与绿色化学[M]. 北京: 科学出版社, 2009: 326-327. |
Zhang S J, Xu C M, Lyu X M. Ionic Liquids and Green Chemistry[M]. Beijing: Science Press, 2009: 326-327. | |
54 | Li Z H, Geßner A, Richters J P, et al. Hollow zinc oxide mesocrystals from an ionic liquid precursor (ILP)[J]. Advanced Materials, 2008, 20(7): 1279-1285. |
55 | Li Z H, Shkilnyy A, Taubert A. Room temperature ZnO mesocrystal formation in the hydrated ionic liquid precursor (ILP) tetrabutylammonium hydroxide[J]. Crystal Growth & Design, 2008, 8(12): 4526-4532. |
56 | Zou H, Luan Y X, Ge J H, et al. Synthesis of ZnO particles on zinc foil in ionic-liquid precursors[J]. CrystEngComm, 2011, 13(7): 2656. |
57 | Raula M, Biswas M, Mandal T K. Ionic liquid-based solvent-induced shape-tunable small-sized ZnO nanostructures with interesting optical properties and photocatalytic activities[J]. RSC Advances, 2014, 4(10): 5055. |
58 | Shahi S K, Kaur N, Shahi J S, et al. Investigation of morphologies, photoluminescence and photocatalytic properties of ZnO nanostructures fabricated using different basic ionic liquids[J]. Journal of Environmental Chemical Engineering, 2018, 6(3): 3718-3725. |
59 | Raiguel S, Dehaen W, Binnemans K. Stability of ionic liquids in Brønsted-basic media[J]. Green Chemistry, 2020, 22(16): 5225-5252. |
60 | Lv Y, Cui H S, Liu P L, et al. Functionalized multi-walled carbon nanotubes supported Ni-based catalysts for adiponitrile selective hydrogenation to 6-aminohexanenitrile and 1, 6-hexanediamine: switching selectivity with [Bmim]OH[J]. Journal of Catalysis, 2019, 372: 330-351. |
61 | Yuan J Y, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update[J]. Progress in Polymer Science, 2013, 38(7): 1009-1036. |
62 | Yuan J Y, Antonietti M. Poly(ionic liquid)s: polymers expanding classical property profiles[J]. Polymer, 2011, 52(7): 1469-1482. |
63 | Naik N S, Padaki M, Déon S, et al. Novel poly (ionic liquid)-based anion exchange membranes for efficient and rapid acid recovery from industrial waste[J]. Chemical Engineering Journal, 2020, 401: 126148. |
64 | 钱文静, 袁超, 郭江娜, 等. 聚离子液体功能材料研究进展[J]. 化学学报, 2015, 73(4): 310-315. |
Qian W J, Yuan C, Guo J N, et al. A review of poly(ionic liquid)s based functional materials[J]. Acta Chimica Sinica, 2015, 73(4): 310-315. | |
65 | 钱文静, 郭江娜, 严锋. 功能化聚离子液体的设计合成及应用研究[J]. 高分子通报, 2015, (10): 94-104. |
Qian W J, Guo J N, Yan F. Design, synthesis and application of poly(ionic liquid)-based functional materials[J]. Polymer Bulletin, 2015, (10): 94-104. | |
66 | Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications[J]. Chemical Society Reviews, 2017, 46(4): 1124-1159. |
67 | Shaplov A S, Ponkratov D O, Vygodskii Y S. Poly(ionic liquid)s: synthesis, properties, and application[J]. Polymer Science Series B, 2016, 58(2): 73-142. |
68 | Muñoz-Bonilla A, Fernández-García M. Poly(ionic liquid)s as antimicrobial materials[J]. European Polymer Journal, 2018, 105: 135-149. |
69 | Atta A M, Al-Lohedan H A, Ezzat A O, et al. Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment[J]. Journal of Molecular Liquids, 2017, 236: 38-47. |
70 | Atta A M, Al-Lohedan H A, Ezzat A O. Synthesis of zinc oxide nanocomposites using poly(ionic liquid): US9468902[P]. 2016-10-18. |
71 | Dule M, Biswas M, Biswas Y, et al. Redox-active poly(ionic liquid)-engineered Ag nanoparticle-decorated ZnO nanoflower heterostructure: a reusable composite catalyst for photopolymerization into high-molecular-weight polymers[J]. Polymer, 2017, 133: 223-231. |
72 | Li R R, Cao J J, Huang Y R, et al. Polyionic liquids (PIL) promoted Ce doped ZnO for the photocatalytic degradation of rhodamine B (RhB)[J]. ChemistrySelect, 2019, 4(36): 10748-10755. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[10] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[11] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[14] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[15] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||