化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4594-4606.DOI: 10.11949/0438-1157.20210186

• 流体力学与传递现象 • 上一篇    下一篇

加温加压下CFD-PBM耦合模型空气-水两相流数值模拟研究

张文龙1,2(),侯燕1,靳海波1,2(),马磊1,2,何广湘1,2,杨索和1,2,郭晓燕1,2,张荣月1,2   

  1. 1.北京石油化工学院化学工程学院,北京 102617
    2.燃料清洁化及高效催化减排技术 北京市重点实验室,北京 102617
  • 收稿日期:2021-01-29 修回日期:2021-05-31 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 靳海波
  • 作者简介:张文龙(1995—),男,硕士研究生,2018520014@bipt.edu.cn

Numerical simulation of air-water two-phase flow under elevated pressures and temperatures using CFD-PBM coupled model

Wenlong ZHANG1,2(),Yan HOU1,Haibo JIN1,2(),Lei MA1,2,Guangxiang HE1,2,Suohe YANG1,2,Xiaoyan GUO1,2,Rongyue ZHANG1,2   

  1. 1.College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    2.Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing 102617, China
  • Received:2021-01-29 Revised:2021-05-31 Online:2021-09-05 Published:2021-09-05
  • Contact: Haibo JIN

摘要:

计算流体力学与群体平衡模型(CFD-PBM)结合可有效地模拟鼓泡塔内流体行为,较准确地预测流场、相含率以及局部气泡尺寸分布。以直径100 mm、高1.3 m的加温加压鼓泡塔为模拟对象,在系统压力为1 MPa、表观气速为0.08~0.24 m/s、温度为30~160℃条件下系统地考察了空气-水体系的表观气速、温度以及固含率对平均气含率、大小气泡气含率、气泡直径和气泡尺寸分布等参数的影响。结果表明,平均气含率的模拟结果和实验值在10%的误差范围内吻合较好;温度的变化主要影响了塔内气泡的聚并和破碎,并用聚并破碎的机理解释了温度对其流体行为的影响。

关键词: 鼓泡塔, 计算流体力学, 两相流, 气含率, 大小气泡, 加温加压, 固含率

Abstract:

The combination of computational fluid dynamics and the population balance model (CFD-PBM) can effectively simulate the fluid behavior in the bubble column, and more accurately predict the flow characteristic, phase holdup and local bubble size distribution. In this paper, numerical simulations of air-water two-phase flow are studied under thermal conditions by using CFD-PBM coupled model in a pressurized bubble column with a 100 mm diameter and 1.3 m height. The system has been investigated in the range of 1MPa, the superficial gas velocity of 0.08—0.24 m/s, and the temperature of 30—160℃. The effect of the superficial gas velocity, temperature and solid content of air-water system on the average gas holdup, large and small bubbles gas holdup, bubble diameter, and bubble size distribution are discussed. The results show that the simulation results of the average gas holdup are in good agreement with the experimental values within the error range of 10%. The temperature change mainly affects the coalescence and breakage of bubbles in the tower, and the coalescence and breakage mechanism is used to explain the influence of temperature on the fluid behavior.

Key words: bubble column, computational fluid dynamics, two-phase flow, gas holdup, large and small bubbles, high temperature and pressure, solid holdup

中图分类号: