化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4639-4648.DOI: 10.11949/0438-1157.20201896
收稿日期:
2020-12-23
修回日期:
2021-06-16
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
王彦红
作者简介:
王彦红(1983—),男,博士,讲师,基金资助:
Yanhong WANG1(),Yingnan LU1,Sufen LI2,Ming DONG2
Received:
2020-12-23
Revised:
2021-06-16
Online:
2021-09-05
Published:
2021-09-05
Contact:
Yanhong WANG
摘要:
基于航空发动机空-油换热器的冷却换热问题,开展了竖直U形圆管内超临界压力RP-3航空煤油换热的数值研究。探究了进口竖直段、弯管段、出口竖直段的换热特征和换热机理,阐述了运行压力和热质比对换热的影响机制。结果表明:进口竖直段呈现均匀换热的特征。弯管段离心力作用致使流体温度出现异常分层,周向密度不均匀,横向不平衡动能诱发强二次流问题,最大二次流速度达到0.45 m·s-1。固体热传导过程也受到影响,出现固体温度异常分层。两者综合作用下导致管壁温度和热通量的周向差别。出口竖直段的周向换热差别依然存在,二次流被削弱。提高运行压力或降低热质比,管截面热物性变化趋缓,周向换热差别减弱。
中图分类号:
王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648.
Yanhong WANG, Yingnan LU, Sufen LI, Ming DONG. Numerical study on heat transfer of supercritical-pressure RP-3 aviation kerosene in U-turn circular tubes[J]. CIESC Journal, 2021, 72(9): 4639-4648.
Grids | Tout/K | uout/(m·s-1) |
---|---|---|
3200×800 | 674.08 | 6.25 |
3200×1200 | 677.17 | 6.55 |
3200×1800 | 677.28 | 6.56 |
2180×1200 | 675.09 | 6.34 |
4150×1200 | 677.22 | 6.56 |
表1 网格无关性分析
Table 1 Grid-independence analysis
Grids | Tout/K | uout/(m·s-1) |
---|---|---|
3200×800 | 674.08 | 6.25 |
3200×1200 | 677.17 | 6.55 |
3200×1800 | 677.28 | 6.56 |
2180×1200 | 675.09 | 6.34 |
4150×1200 | 677.22 | 6.56 |
1 | Deng H W, Zhu K, Xu G Q, et al. Heat transfer characteristics of RP-3 kerosene at supercritical pressure in a vertical circular tube[J]. Journal of Enhanced Heat Transfer, 2012, 19(5): 409-421. |
2 | Zhang C B, Xu G Q, Deng H W, et al. Investigation of flow resistance characteristics of endothermic hydrocarbon fuel under supercritical pressures[J]. Propulsion and Power Research, 2013, 2(2): 119-130. |
3 | Zhu K, Xu G Q, Tao Z, et al. Flow frictional resistance characteristics of kerosene RP-3 in horizontal circular tube at supercritical pressure[J]. Experimental Thermal and Fluid Science, 2013, 44: 245-252. |
4 | Wang H, Zhou J, Pan Y, et al. Experimental investigation on the characteristics of thermo-acoustic instability in hydrocarbon fuel at supercritical pressures[J]. Acta Astronautica, 2016, 121: 29-38. |
5 | Li S F, Wang Y N, Dong M, et al. Experimental investigation on flow and heat transfer instabilities of RP-3 aviation kerosene in a vertical miniature tube under supercritical pressures[J]. Applied Thermal Engineering, 2019, 149: 73-84. |
6 | Li X F, Zhong F Q, Fan X J, et al. Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure[J]. Applied Thermal Engineering, 2010, 30(13): 1845-1851. |
7 | Zhang C B, Xu G Q, Gao L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. The Journal of Supercritical Fluids, 2012, 72: 90-99. |
8 | Fu Y C, Huang H R, Wen J, et al. Experimental investigation on convective heat transfer of supercritical RP-3 in vertical miniature tubes with various diameters[J]. International Journal of Heat and Mass Transfer, 2017, 112: 814-824. |
9 | Liu B, Zhu Y H, Yan J J, et al. Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J]. International Journal of Heat and Mass Transfer, 2015, 91: 734-746. |
10 | Wang Y H, Lu Y N, Li S F, et al. Numerical study on non-uniform heat transfer deterioration of supercritical RP-3 aviation kerosene in a horizontal tube[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1542-1557. |
11 | Huang D, Ruan B, Wu X Y, et al. Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures[J]. Chinese Journal of Chemical Engineering, 2015, 23(2): 425-434. |
12 | Huang D, Li W. Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 111: 266-278. |
13 | Wen J, Huang H R, Jia Z X, et al. Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1173-1181. |
14 | Cheng Z Y, Tao Z, Zhu J Q, et al. Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions[J]. Applied Thermal Engineering, 2018, 134: 39-53. |
15 | Sun X, Xu K K, Meng H, et al. Buoyancy effects on supercritical-pressure conjugate heat transfer of aviation kerosene in horizontal tubes[J]. The Journal of Supercritical Fluids, 2018, 139: 105-113. |
16 | Lv L, Wen J, Fu Y C, et al. Numerical investigation on convective heat transfer of supercritical aviation kerosene in a horizontal tube under hyper gravity conditions[J]. Aerospace Science and Technology, 2020, 105: 105962. |
17 | Sun X, Meng H, Zheng Y. Asymmetric heating and buoyancy effects on heat transfer of hydrocarbon fuel in a horizontal square channel at supercritical pressures[J]. Aerospace Science and Technology, 2019, 93: 105358. |
18 | Hu J Y, Zhou J, Wang N, et al. Numerical study of buoyancy's effect on flow and heat transfer of kerosene in a tiny horizontal square tube at supercritical pressure[J]. Applied Thermal Engineering, 2018, 141: 1070-1079. |
19 | Wen J, Huang H R, Fu Y C, et al. Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure[J]. Applied Thermal Engineering, 2017, 121: 853-862. |
20 | Fu Y C, Wen J, Tao Z, et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes[J]. Applied Thermal Engineering, 2017, 116: 43-55. |
21 | 邓冬, 汪荣顺. 液氮通过受热U形管传热特性的数值模拟[J]. 上海交通大学学报, 2013, 47(8): 1292-1299. |
Deng D, Wang R S. Numerical simulation of heat transfer of liquid nitrogen through heated U-tubes[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1292-1299. | |
22 | 黄文, 邓宏武, 徐国强, 等. U形管内超临界压力航空煤油压降特性[J]. 航空动力学报, 2011, 26(3): 582-587. |
Huang W, Deng H W, Xu G Q, et al. Pressure drop characteristics of supercritical aviation kerosene in U-turn tube[J]. Journal of Aerospace Power, 2011, 26(3): 582-587. | |
23 | Zhang C B, Tao Z, Xu G Q, et al. Heat transfer investigation of the sub- and supercritical fuel flow through a U-turn tube[C]//Proceedings of International Symposium on Heat Transfer in Gas Turbine Systems. New York: Begellhouse, 2009: 1-13. |
24 | Wang X C, Xiang M J, Huo H J, et al. Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied Thermal Engineering, 2018, 141: 775-787. |
25 | Gao Z G, Bai J H. Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube[J]. Applied Thermal Engineering, 2017, 120: 10-18. |
26 | Wang Y H, Li S F, Dong M. Experimental investigation on heat transfer deterioration and thermo-acoustic instability of supercritical-pressure aviation kerosene within a vertical upward circular tube[J]. Applied Thermal Engineering, 2019, 157: 113707. |
27 | Deng H W, Zhang C B, Xu G Q, et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986. |
28 | Deng H W, Zhu K, Xu G Q, et al. Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 263-268. |
29 | Deng H W, Zhang C B, Xu G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365. |
30 | 程泽源, 朱剑琴, 金钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报, 2016, 31(2): 391-398. |
Cheng Z Y, Zhu J Q, Jin Z. Study on surrogate model of endothermic hydrocarbon fuel RP-3[J]. Journal of Aerospace Power, 2016, 31(2): 391-398. | |
31 | 王彦红, 李素芬. 超临界压力下航空煤油传热恶化判别准则[J]. 推进技术, 2019, 40(11): 2528-2536. |
Wang Y H, Li S F. Criterion for heat transfer deterioration of aviation kerosene under supercritical pressures[J]. Journal of Propulsion Technology, 2019, 40(11): 2528-2536. | |
32 | 张羽楠. 超临界甲烷在U形管内换热特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2020. |
Zhang Y N. Heat transfer characteristics of supercritical methane in U-type tube[D]. Harbin: Harbin University of Science and Technology, 2020. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||