化工学报 ›› 2022, Vol. 73 ›› Issue (11): 4987-4997.DOI: 10.11949/0438-1157.20221122
杨遂军1,2(), 丁炯2, 许启跃2, 叶树亮2, 郭子超1(), 陈网桦1
收稿日期:
2022-08-08
修回日期:
2022-08-31
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
郭子超
作者简介:
杨遂军(1979—),男,博士研究生,yangsuijun1@sina.com
基金资助:
Suijun YANG1,2(), Jiong DING2, Qiyue XU2, Shuliang YE2, Zichao GUO1(), Wanghua CHEN1
Received:
2022-08-08
Revised:
2022-08-31
Online:
2022-11-05
Published:
2022-12-06
Contact:
Zichao GUO
摘要:
绝热加速量热主要采用基于单一实验数据的模型拟合方法进行动力学预测,难以应用于未知机理反应和复杂反应。为此,通过数值模拟方法在绝热条件下产生n级反应与Kamal自催化反应数据,采用Vyazovkin和Friedman等转化率方法进行动力学求解;然后在不同起始温度和等温条件下,采用无模型动力学参数进行绝热和等温动力学预测,并与模拟数据对比。结果表明,绝热加速量热采用Vyazovkin方法预测最大相对误差为39.9%,Friedman方法预测最大误差超100%,前者更适合进行预测;建议在预测温度±40℃范围内进行实验测量。这为未知化学物质和复杂反应热失控风险评估及化工事故模拟等提供了有效手段。
中图分类号:
杨遂军, 丁炯, 许启跃, 叶树亮, 郭子超, 陈网桦. 绝热加速量热无模型方法动力学预测[J]. 化工学报, 2022, 73(11): 4987-4997.
Suijun YANG, Jiong DING, Qiyue XU, Shuliang YE, Zichao GUO, Wanghua CHEN. Kinetic predictions from adiabatic accelerating rate calorimetric data by using the model-free methods[J]. CIESC Journal, 2022, 73(11): 4987-4997.
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min | TMRad/ min |
---|---|---|---|---|---|
50 | SIM | 3432415 | 4258816 | 4262877 | 4262893 |
VYA | 3380655 (-1.5%) | 4198628 (-1.4%) | 4202742 (-1.4%) | 4202758 (-1.4%) | |
FR | 830242 (-75.8%) | 1433763 (-66.3%) | 1437120 (-66.3%) | 1437133 (-66.3%) | |
80 | SIM | 26793 | 36108 | 36226 | 36225 |
VYA | 26755 (-0.1%) | 36029 (-0.2%) | 36149 (-0.2%) | 36148 (-0.2%) | |
FR | 12346 (-53.9%) | 20377 (-43.6%) | 20480 (-43.5%) | 20480 (-43.5%) | |
110 | SIM | 445.80 | 656.40 | 662.00 | 662.00 |
VYA | 450.50 (1.1%) | 661.10 (0.7%) | 666.90 (0.7%) | 666.80 (0.7%) | |
FR | 453.30 (1.7%) | 661.30 (0.7%) | 666.40 (0.7%) | 666.30 (0.6%) | |
150 | SIM | 4.65 | 7.74 | 7.91 | 7.91 |
VYA | 4.76 (2.4%) | 7.85 (1.4%) | 8.04 (1.6%) | 8.03 (1.5%) | |
FR | 17.00 (265.6%) | 20.44 (164.1%) | 20.61 (160.6%) | 20.61 (160.6%) | |
180 | SIM | 0.26 | 0.47 | 0.49 | 0.49 |
VYA | 0.26 (0) | 0.48 (2.1%) | 0.50 (2.0%) | 0.50 (2.0%) | |
FR | 3.02 (1061.5%) | 3.27 (595.7%) | 3.29 (571.4%) | 3.29 (571.4%) |
表1 n级反应绝热预测模式下到达给定转化率和特征点的时间
Table 1 Time to reach an content of conversion of α and feature point in n-order reaction under adiabatic predictions
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min | TMRad/ min |
---|---|---|---|---|---|
50 | SIM | 3432415 | 4258816 | 4262877 | 4262893 |
VYA | 3380655 (-1.5%) | 4198628 (-1.4%) | 4202742 (-1.4%) | 4202758 (-1.4%) | |
FR | 830242 (-75.8%) | 1433763 (-66.3%) | 1437120 (-66.3%) | 1437133 (-66.3%) | |
80 | SIM | 26793 | 36108 | 36226 | 36225 |
VYA | 26755 (-0.1%) | 36029 (-0.2%) | 36149 (-0.2%) | 36148 (-0.2%) | |
FR | 12346 (-53.9%) | 20377 (-43.6%) | 20480 (-43.5%) | 20480 (-43.5%) | |
110 | SIM | 445.80 | 656.40 | 662.00 | 662.00 |
VYA | 450.50 (1.1%) | 661.10 (0.7%) | 666.90 (0.7%) | 666.80 (0.7%) | |
FR | 453.30 (1.7%) | 661.30 (0.7%) | 666.40 (0.7%) | 666.30 (0.6%) | |
150 | SIM | 4.65 | 7.74 | 7.91 | 7.91 |
VYA | 4.76 (2.4%) | 7.85 (1.4%) | 8.04 (1.6%) | 8.03 (1.5%) | |
FR | 17.00 (265.6%) | 20.44 (164.1%) | 20.61 (160.6%) | 20.61 (160.6%) | |
180 | SIM | 0.26 | 0.47 | 0.49 | 0.49 |
VYA | 0.26 (0) | 0.48 (2.1%) | 0.50 (2.0%) | 0.50 (2.0%) | |
FR | 3.02 (1061.5%) | 3.27 (595.7%) | 3.29 (571.4%) | 3.29 (571.4%) |
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min |
---|---|---|---|---|
50 | SIM | 7636348 | 50239458 | 166899493 |
VYA | 7554461 (-1.1%) | 50680113 (0.9%) | 173364554 (3.9%) | |
FR | 2683485 (-64.9%) | 40428782 (-19.5%) | 155819398 (-6.6%) | |
80 | SIM | 53330 | 350856 | 1165572 |
VYA | 53340 (0) | 354912 (1.2%) | 1211859 (4.0%) | |
FR | 29833 (-44.1%) | 315057 (-10.2%) | 1139930 (-2.2%) | |
110 | SIM | 810 | 5331 | 17711 |
VYA | 818 (1.0%) | 5406 (1.4%) | 18429 (4.1%) | |
FR | 807 (-0.4%) | 5464 (2.5%) | 18263 (3.1%) | |
150 | SIM | 7.70 | 50.50 | 167.80 |
VYA | 7.80 (1.3%) | 51.40 (1.8%) | 174.80 (4.2%) | |
FR | 21.50 (179.2%) | 69.00 (36.6%) | 192.80 (14.9%) | |
180 | SIM | 0.40 | 2.63 | 8.75 |
VYA | 0.41 (2.5%) | 2.68 (1.9%) | 9.11 (4.1%) | |
FR | 3.31 (727.5%) | 5.91 (124.7%) | 12.45 (42.3%) |
表2 n级反应等温预测模式下到达给定转化率的时间
Table 2 Time to reach an content of conversion of α in n-order reaction under isothermal predictions
温度/ ℃ | 方法 | tα=10%/ min | tα=50%/ min | tα=90%/ min |
---|---|---|---|---|
50 | SIM | 7636348 | 50239458 | 166899493 |
VYA | 7554461 (-1.1%) | 50680113 (0.9%) | 173364554 (3.9%) | |
FR | 2683485 (-64.9%) | 40428782 (-19.5%) | 155819398 (-6.6%) | |
80 | SIM | 53330 | 350856 | 1165572 |
VYA | 53340 (0) | 354912 (1.2%) | 1211859 (4.0%) | |
FR | 29833 (-44.1%) | 315057 (-10.2%) | 1139930 (-2.2%) | |
110 | SIM | 810 | 5331 | 17711 |
VYA | 818 (1.0%) | 5406 (1.4%) | 18429 (4.1%) | |
FR | 807 (-0.4%) | 5464 (2.5%) | 18263 (3.1%) | |
150 | SIM | 7.70 | 50.50 | 167.80 |
VYA | 7.80 (1.3%) | 51.40 (1.8%) | 174.80 (4.2%) | |
FR | 21.50 (179.2%) | 69.00 (36.6%) | 192.80 (14.9%) | |
180 | SIM | 0.40 | 2.63 | 8.75 |
VYA | 0.41 (2.5%) | 2.68 (1.9%) | 9.11 (4.1%) | |
FR | 3.31 (727.5%) | 5.91 (124.7%) | 12.45 (42.3%) |
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRad/ h |
---|---|---|---|---|---|
80 | SIM | 21425 | 23652 | 23656 | 23656 |
VYA | 22145 (3.4%) | 24972 (5.6%) | 24977 (5.6%) | 24977 (5.6%) | |
FR | 9913 (-53.7%) | 12851 (-45.7%) | 12855 (-45.7%) | 12855 (-45.7%) | |
100 | SIM | 918 | 1113 | 1114 | 1114 |
VYA | 926 (0.9%) | 1116 (0.3%) | 1117 (0.3%) | 1117 (0.3%) | |
FR | 685 (-25.4%) | 893 (-19.8%) | 894 (-19.7%) | 894 (-19.7%) | |
110 | SIM | 211.50 | 268.90 | 269.30 | 269.30 |
VYA | 214.60 (1.5%) | 270.20 (0.5%) | 270.70 (0.5%) | 270.60 (0.5%) | |
FR | 210.00 (-0.7%) | 272.20 (1.2%) | 272.60 (1.2%) | 272.60 (1.2%) | |
120 | SIM | 52.20 | 69.40 | 69.60 | 69.60 |
VYA | 53.60 (2.7%) | 71.10 (2.4%) | 71.30 (2.4%) | 71.30 (2.4%) | |
FR | 71.40 (36.8%) | 91.30 (31.6%) | 91.50 (31.5%) | 91.50 (31.5%) | |
150 | SIM | 1.16 | 1.73 | 1.75 | 1.75 |
VYA | 1.24 (6.9%) | 2.04 (17.9%) | 2.08 (18.9%) | 2.07 (18.3%) | |
FR | 5.06 (336.2%) | 6.00 (246.8%) | 6.03 (244.6%) | 6.03 (244.6%) |
表3 Kamal反应绝热预测模式下到达给定转化率和特征点的时间
Table 3 Time to reach an content of conversion of α and feature point in Kamal reaction under adiabatic predictions
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRad/ h |
---|---|---|---|---|---|
80 | SIM | 21425 | 23652 | 23656 | 23656 |
VYA | 22145 (3.4%) | 24972 (5.6%) | 24977 (5.6%) | 24977 (5.6%) | |
FR | 9913 (-53.7%) | 12851 (-45.7%) | 12855 (-45.7%) | 12855 (-45.7%) | |
100 | SIM | 918 | 1113 | 1114 | 1114 |
VYA | 926 (0.9%) | 1116 (0.3%) | 1117 (0.3%) | 1117 (0.3%) | |
FR | 685 (-25.4%) | 893 (-19.8%) | 894 (-19.7%) | 894 (-19.7%) | |
110 | SIM | 211.50 | 268.90 | 269.30 | 269.30 |
VYA | 214.60 (1.5%) | 270.20 (0.5%) | 270.70 (0.5%) | 270.60 (0.5%) | |
FR | 210.00 (-0.7%) | 272.20 (1.2%) | 272.60 (1.2%) | 272.60 (1.2%) | |
120 | SIM | 52.20 | 69.40 | 69.60 | 69.60 |
VYA | 53.60 (2.7%) | 71.10 (2.4%) | 71.30 (2.4%) | 71.30 (2.4%) | |
FR | 71.40 (36.8%) | 91.30 (31.6%) | 91.50 (31.5%) | 91.50 (31.5%) | |
150 | SIM | 1.16 | 1.73 | 1.75 | 1.75 |
VYA | 1.24 (6.9%) | 2.04 (17.9%) | 2.08 (18.9%) | 2.07 (18.3%) | |
FR | 5.06 (336.2%) | 6.00 (246.8%) | 6.03 (244.6%) | 6.03 (244.6%) |
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRiso/ h |
---|---|---|---|---|---|
80 | SIM | 43611 | 68873 | 71508 | 70566 |
VYA | 48859 (12.0%) | 94362 (37.0%) | 99052 (38.5%) | 98691 (39.9%) | |
FR | 26741 (-38.7%) | 73243 (6.3%) | 77960 (9.0%) | 77601 (10.0%) | |
100 | SIM | 1844 | 4367 | 4778 | 4629 |
VYA | 1938 (5.1%) | 4702 (7.7%) | 5241 (9.7%) | 5146 (11.2%) | |
FR | 1507 (-18.3%) | 4457 (2.1%) | 5002 (4.7%) | 4907 (6.0%) | |
110 | SIM | 416 | 1222 | 1396 | 1332 |
VYA | 438 (5.3%) | 1213 (-0.7%) | 1413 (1.2%) | 1366 (2.6%) | |
FR | 415 (-0.2%) | 1256 (2.8%) | 1458 (4.4%) | 1412 (6.0%) | |
120 | SIM | 100.20 | 362.40 | 438.80 | 410.30 |
VYA | 106.90 (6.7%) | 341.50 (-5.8%) | 419.20 (-4.5%) | 396.60 (-3.3%) | |
FR | 126.30 (26.0%) | 384.20 (6.0%) | 463.30 (5.6%) | 440.50 (7.4%) | |
150 | SIM | 2.05 | 12.30 | 19.96 | 16.49 |
VYA | 2.32 (13.2%) | 12.00 (-2.4%) | 18.06 (-9.5%) | 15.05 (-8.7%) | |
FR | 6.60 (222.0%) | 17.54 (42.6%) | 23.75 (19.0%) | 20.70 (25.5%) |
表4 Kamal反应等温预测模式下到达给定转化率和特征点的时间
Table 4 Time to reach an content of conversion of α and feature point in Kamal reaction under isothermal predictions
温度/ ℃ | 方法 | tα=10%/ h | tα=50%/ h | tα=90%/ h | TMRiso/ h |
---|---|---|---|---|---|
80 | SIM | 43611 | 68873 | 71508 | 70566 |
VYA | 48859 (12.0%) | 94362 (37.0%) | 99052 (38.5%) | 98691 (39.9%) | |
FR | 26741 (-38.7%) | 73243 (6.3%) | 77960 (9.0%) | 77601 (10.0%) | |
100 | SIM | 1844 | 4367 | 4778 | 4629 |
VYA | 1938 (5.1%) | 4702 (7.7%) | 5241 (9.7%) | 5146 (11.2%) | |
FR | 1507 (-18.3%) | 4457 (2.1%) | 5002 (4.7%) | 4907 (6.0%) | |
110 | SIM | 416 | 1222 | 1396 | 1332 |
VYA | 438 (5.3%) | 1213 (-0.7%) | 1413 (1.2%) | 1366 (2.6%) | |
FR | 415 (-0.2%) | 1256 (2.8%) | 1458 (4.4%) | 1412 (6.0%) | |
120 | SIM | 100.20 | 362.40 | 438.80 | 410.30 |
VYA | 106.90 (6.7%) | 341.50 (-5.8%) | 419.20 (-4.5%) | 396.60 (-3.3%) | |
FR | 126.30 (26.0%) | 384.20 (6.0%) | 463.30 (5.6%) | 440.50 (7.4%) | |
150 | SIM | 2.05 | 12.30 | 19.96 | 16.49 |
VYA | 2.32 (13.2%) | 12.00 (-2.4%) | 18.06 (-9.5%) | 15.05 (-8.7%) | |
FR | 6.60 (222.0%) | 17.54 (42.6%) | 23.75 (19.0%) | 20.70 (25.5%) |
1 | Townsend D I, Tou J C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30. |
2 | 丁炯, 陈琪, 许启跃, 等. 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70(1): 417-424. |
Ding J, Chen Q, Xu Q Y, et al. ARC thermal inertia correction method based on C80 data merging[J]. CIESC Journal, 2019, 70(1): 417-424. | |
3 | 魏彤彤, 钱新明, 袁梦琦. 酸、碱污染物对过氧化苯甲酸叔丁酯热危险性影响[J]. 化工学报, 2015, 66(10): 3931-3939. |
Wei T T, Qian X M, Yuan M Q. Thermal hazard analysis for tert-butyl peroxybenzoate contaminated by acid or alkali[J]. CIESC Journal, 2015, 66(10): 3931-3939. | |
4 | 蒋慧灵, 闫松, 魏彤彤. 水分对过氧化苯甲酸叔丁酯热稳定性的影响[J]. 化工学报, 2011, 62(5): 1290-1295. |
Jiang H L, Yan S, Wei T T. Effect of water on thermal stability of tert-butyl peroxy benzoate[J]. CIESC Journal, 2011, 62(5): 1290-1295. | |
5 | Samael V K J, Smitha V S, Sivanesh N E, et al. Reactive thermal hazards of irradiated tributyl phosphate with nitric acid[J]. Thermochimica Acta, 2018, 666: 18-26. |
6 | Roduit B, Hartmann M, Folly P, et al. New kinetic approach for evaluation of hazard indicators based on merging DSC and ARC or large scale tests[J]. Chemical Engineering Transactions, 2016, 48: 37-42. |
7 | Jeraal M I, Roberts K J, McRobbie I, et al. Assessment of the thermal degradation of sodium lauroyl isethionate using predictive isoconversional kinetics and a temperature-resolved analysis of evolved gases[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8112-8122. |
8 | 郭子超, 郝琳, 卫宏远. 一种计算最大反应速率到达时间的新方法[J]. 化工学报, 2016, 67(S1): 22-27. |
Guo Z C, Hao L, Wei H Y. A new method for calculating time to maximum rate under adiabatic condition[J]. CIESC Journal, 2016, 67(S1): 22-27. | |
9 | 朱益, 王浩, 陈利平, 等. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387. |
Zhu Y, Wang H, Chen L P, et al. Calculate time to maximum rate under adiabatic condition by numerical calculation method[J]. CIESC Journal, 2019, 70(1): 379-387. | |
10 | de Jesus Silva A J, Contreras M M, Nascimento C R, et al. Kinetics of thermal degradation and lifetime study of poly(vinylidene fluoride) (PVDF) subjected to bioethanol fuel accelerated aging[J]. Heliyon, 2020, 6(7): e04573. |
11 | Käser F, Roduit B. Prediction of the ageing of rubber using the chemiluminescence approach and isoconversional kinetics[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(1): 231-237. |
12 | 余成明, 彭旭东, 江锦波, 等. 宽温域下氟醚橡胶的加速老化行为和机理研究[J]. 化工学报, 2021, 72(6): 3399-3410. |
Yu C M, Peng X D, Jiang J B, et al. Investigation on accelerated aging behavior and mechanism of fluoroether rubber under wide temperature range[J]. CIESC Journal, 2021, 72(6): 3399-3410. | |
13 | 韩露, 马芳武, 陈实现, 等. 玄武岩纤维增强聚乳酸力学性能及耐老化性能[J]. 化工学报, 2019, 70(3): 1171-1178. |
Han L, Ma F W, Chen S X, et al. Mechanical properties of basalt fiber-reinforced polylactide matrix and aging resistance properties[J]. CIESC Journal, 2019, 70(3): 1171-1178. | |
14 | Stanko M, Stommel M. Kinetic prediction of fast curing polyurethane resins by model-free isoconversional methods[J]. Polymers, 2018, 10(7): 698. |
15 | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
16 | Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C: Polymer Symposia, 1964, 6(1): 183-195. |
17 | Flynn J H, Wall L A. General treatment of the thermogravimetry of polymers[J]. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 1966, 70A(6): 487-523. |
18 | Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706. |
19 | Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids[J]. Journal of Chemical Information and Computer Sciences, 1996, 36(1): 42-45. |
20 | Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature[J]. Journal of Computational Chemistry, 1997, 18(3): 393-402. |
21 | Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy[J]. Journal of Computational Chemistry, 2001, 22(2): 178-183. |
22 | Ding J, Chen L X, Xu Q Y, et al. Differential isoconversional kinetic approach for accelerating rate calorimetry[J]. Thermochimica Acta, 2020, 689: 178607. |
23 | Ding J, Zhang X C, Hu D F, et al. Model-free kinetic determination of pre-exponential factor and reaction mechanism in accelerating rate calorimetry[J]. Thermochimica Acta, 2021, 702: 178983. |
24 | Yang S J, Ding J, Zhang X C, et al. Thermal inertias and confidence intervals in the determination of activation energy by isoconversional methods applied for accelerating rate calorimetry[J]. Thermochimica Acta, 2022, 716: 179290. |
25 | Yang S J, Ding J, Zhang X C, et al. Fusion method of model-free and model-fitting for complex reactions in accelerating rate calorimetry[J]. Thermochimica Acta, 2022, 712: 179212. |
26 | Burnham A K, Dinh L N. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(2): 479-490. |
27 | Cai J M, Chen Y, Liu R R. Isothermal kinetic predictions from nonisothermal data by using the iterative linear integral isoconversional method[J]. Journal of the Energy Institute, 2014, 87(3): 183-187. |
28 | Granado L, Sbirrazzuoli N. Isoconversional computations for nonisothermal kinetic predictions[J]. Thermochimica Acta, 2021, 697: 178859. |
29 | Sbirrazzuoli N. Model-free isothermal and nonisothermal predictions using advanced isoconversional methods[J]. Thermochimica Acta, 2021, 697: 178855. |
30 | Vyazovkin S. Isoconversional Kinetics of Thermally Stimulated Processes[M]. Cham: Springer International Publishing, 2015. |
31 | Roduit B, Folly P, Berger B, et al. Evaluating sadt by advanced kinetics-based simulation approach[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(1): 153-161. |
32 | 杨庭, 陈利平, 陈网桦, 等. 分解反应自催化性质快速鉴别的实验方法[J]. 物理化学学报, 2014, 30(7): 1215-1222. |
Yang T, Chen L P, Chen W H, et al. Experimental method on rapid identification of autocatalysis in decomposition reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1215-1222. | |
33 | Kamal M R. Thermoset characterization for moldability analysis[J]. Polymer Engineering & Science, 1974, 14(3): 231-239. |
34 | Sbirrazzuoli N. Is the Friedman method applicable to transformations with temperature dependent reaction heat?[J]. Macromolecular Chemistry and Physics, 2007, 208(14): 1592-1597. |
35 | Vyazovkin S, Burnham A K, Favergeon L, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics[J]. Thermochimica Acta, 2020, 689: 178597. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[15] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||