化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1539-1548.DOI: 10.11949/0438-1157.20221565
收稿日期:
2022-12-05
修回日期:
2023-04-10
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
梁斌
作者简介:
王皓(1998—),男,硕士研究生,wanghaoscusce@qq.com
基金资助:
Hao WANG1(), Siyang TANG1, Shan ZHONG1, Bin LIANG1,2()
Received:
2022-12-05
Revised:
2023-04-10
Online:
2023-04-05
Published:
2023-06-02
Contact:
Bin LIANG
摘要:
单乙醇胺(MEA)溶液吸收二氧化碳在碳捕集封存或利用技术中应用广泛,但MEA吸收富液再生能耗高。有报道称具有催化性质的固体填料可以强化CO2解吸,但固体作用原理并未被清楚证实。为了分析颗粒填料的作用,通过比较不同固体颗粒(硅铝比为25、50、80的HZSM-5和活性炭)在再生过程中的作用,证实了非稳态过程HZSM-5颗粒存在表面酸中心吸附有机胺促进解吸的现象,最大有15.75%的促进效果,呈现HZSM-5-25>HZSM-5-50>HZSM-5-80>AC>Blank的规律。但是,颗粒酸中心有限的吸附量不能持续促进解吸,恒温段的促进效果降低至1.61%~2.67%,此时传质即气泡成核是提升解吸速率的主要原因,颗粒表面提供非均相成核位点,疏水性强的表面更可能促进气液分离。通过传热影响分析,表明改变热通量对CO2解吸速率的影响显著,相比传质速率与反应速率,传热速率在影响解吸速率的因素中占据主要地位。
中图分类号:
王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution[J]. CIESC Journal, 2023, 74(4): 1539-1548.
时间/s | 标准差 | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 |
300 | 0 | 3.35×10-3 | 1.38×10-3 | 1.84×10-3 | 2.88×10-3 |
600 | 1.61×10-3 | 3.25×10-3 | 2.31×10-3 | 2.39×10-3 | 0.80×10-3 |
900 | 3.35×10-3 | 3.50×10-3 | 2.80×10-3 | 1.84×10-3 | 0 |
1200 | 0.93×10-3 | 3.04×10-3 | 2.01×10-3 | 1.66×10-3 | 2.3×10-3 |
1800 | 4.26×10-3 | 0.80×10-3 | 1.22×10-3 | 2.39×10-3 | 2.01×10-3 |
2400 | 0.57×10-3 | 3.34×10-3 | 1.13×10-3 | 3.60×10-3 | 0 |
表1 CO2负载量标准差
Table 1 Standard deviation of CO2 loading
时间/s | 标准差 | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 |
300 | 0 | 3.35×10-3 | 1.38×10-3 | 1.84×10-3 | 2.88×10-3 |
600 | 1.61×10-3 | 3.25×10-3 | 2.31×10-3 | 2.39×10-3 | 0.80×10-3 |
900 | 3.35×10-3 | 3.50×10-3 | 2.80×10-3 | 1.84×10-3 | 0 |
1200 | 0.93×10-3 | 3.04×10-3 | 2.01×10-3 | 1.66×10-3 | 2.3×10-3 |
1800 | 4.26×10-3 | 0.80×10-3 | 1.22×10-3 | 2.39×10-3 | 2.01×10-3 |
2400 | 0.57×10-3 | 3.34×10-3 | 1.13×10-3 | 3.60×10-3 | 0 |
时间/s | 相对偏差/% | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0~300 | 4.2 | 0.1 | 7.1 | 3.0 | 9.0 |
300~600 | 6.4 | 5.6 | 3.0 | 5.2 | 4.0 |
600~900 | 8.5 | 10.3 | 7.9 | 7.6 | 3.1 |
900~1200 | 1.9 | 1.5 | 7.8 | 3.3 | 0.9 |
1200~1800 | 4.7 | 5.7 | 12.0 | 11.0 | 15.6 |
1800~2400 | 0.5 | 0.1 | 2.1 | 9.8 | 11.0 |
平均值 | 4.4 | 3.9 | 6.7 | 6.7 | 7.2 |
表2 质量守恒相对偏差
Table 2 Relative deviation of mass balance
时间/s | 相对偏差/% | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0~300 | 4.2 | 0.1 | 7.1 | 3.0 | 9.0 |
300~600 | 6.4 | 5.6 | 3.0 | 5.2 | 4.0 |
600~900 | 8.5 | 10.3 | 7.9 | 7.6 | 3.1 |
900~1200 | 1.9 | 1.5 | 7.8 | 3.3 | 0.9 |
1200~1800 | 4.7 | 5.7 | 12.0 | 11.0 | 15.6 |
1800~2400 | 0.5 | 0.1 | 2.1 | 9.8 | 11.0 |
平均值 | 4.4 | 3.9 | 6.7 | 6.7 | 7.2 |
颗粒 | 平均解吸速率/(mmol/min) | 促进效果/% |
---|---|---|
HZSM-5-25 | 9.522 | 15.75 |
HZSM-5-50 | 9.299 | 13.04 |
HZSM-5-80 | 9.000 | 9.41 |
AC | 8.358 | 1.60 |
Blank | 8.226 | — |
表3 升温段平均解吸速率
Table 3 Average desorption rates in heating section
颗粒 | 平均解吸速率/(mmol/min) | 促进效果/% |
---|---|---|
HZSM-5-25 | 9.522 | 15.75 |
HZSM-5-50 | 9.299 | 13.04 |
HZSM-5-80 | 9.000 | 9.41 |
AC | 8.358 | 1.60 |
Blank | 8.226 | — |
颗粒 | 平均 解吸速率/(mmol/min) | CO2平衡 浓度/ (mol/L) | CO2实际 浓度/ (mol/L) | 过饱 和度 | 促进 效果/% |
---|---|---|---|---|---|
HZSM-5-25 | 8.7371 | 0.0016 | 0.0188 | 10.72 | 2.20 |
HZSM-5-50 | 8.7770 | 0.0016 | 0.0188 | 10.72 | 2.67 |
HZSM-5-80 | 8.6973 | 0.00159 | 0.0209 | 12.15 | 1.74 |
AC | 8.6861 | 0.00159 | 0.0212 | 12.35 | 1.61 |
Blank | 8.5487 | 0.00157 | 0.0272 | 16.37 | — |
表4 恒温段平均解吸速率
Table 4 Average desorption rate of constant temperature section
颗粒 | 平均 解吸速率/(mmol/min) | CO2平衡 浓度/ (mol/L) | CO2实际 浓度/ (mol/L) | 过饱 和度 | 促进 效果/% |
---|---|---|---|---|---|
HZSM-5-25 | 8.7371 | 0.0016 | 0.0188 | 10.72 | 2.20 |
HZSM-5-50 | 8.7770 | 0.0016 | 0.0188 | 10.72 | 2.67 |
HZSM-5-80 | 8.6973 | 0.00159 | 0.0209 | 12.15 | 1.74 |
AC | 8.6861 | 0.00159 | 0.0212 | 12.35 | 1.61 |
Blank | 8.5487 | 0.00157 | 0.0272 | 16.37 | — |
名称 | 富液CO2负载量/(mol/mol) | 解吸温度/℃ | 平均解吸速率/ (mmol/min) | |
---|---|---|---|---|
Blank1 | 0.4998 | 91~92 | 6.790① | 6.107② |
Blank2 | 0.4886 | 91~92 | 6.714① | 6.107② |
HZSM-5-25 | 0.4886 | 91~92 | 6.763① | 6.136② |
表5 传热面积和颗粒对解吸速率的影响
Table 5 Effect of heat transfer area and particles on desorption rate
名称 | 富液CO2负载量/(mol/mol) | 解吸温度/℃ | 平均解吸速率/ (mmol/min) | |
---|---|---|---|---|
Blank1 | 0.4998 | 91~92 | 6.790① | 6.107② |
Blank2 | 0.4886 | 91~92 | 6.714① | 6.107② |
HZSM-5-25 | 0.4886 | 91~92 | 6.763① | 6.136② |
1 | Jung J, Jeong Y S, Lee U, et al. New configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3865-3878. |
2 | Liang Z W, Fu K Y, Idem R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288. |
3 | Abu-Zahra M R M, Schneiders L H J, Niederer J P M, et al. CO2 capture from power plants[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 37-46. |
4 | Li K K, Cousins A, Yu H, et al. Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement[J]. Energy Science & Engineering, 2016, 4(1): 23-39. |
5 | Li X F, Wang S J, Chen C H. Experimental and rate-based modeling study of CO2 capture by aqueous monoethanolamine[J]. Greenhouse Gases: Science and Technology, 2014, 4(4): 495-508. |
6 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
7 | Idem R, Shi H C, Gelowitz D, et al. Catalytic method and apparatus for separating a gaseous component from an incoming gas stream: US9586175[P]. 2017-03-07. |
8 | Shi H C, Naami A, Idem R, et al. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26: 39-50. |
9 | Liang Z W, Idem R, Tontiwachwuthikul P, et al. Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts[J]. AIChE Journal, 2016, 62(3): 753-765. |
10 | Zhang X W, Zhang R, Liu H L, et al. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts[J]. Applied Energy, 2018, 218: 417-429. |
11 | Zhang X W, Liu H L, Liang Z W, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Applied Energy, 2018, 229: 562-576. |
12 | Zhang X W, Huang Y F, Gao H X, et al. Zeolite catalyst-aided tri-solvent blend amine regeneration: an alternative pathway to reduce the energy consumption in amine-based CO2 capture process[J]. Applied Energy, 2019, 240: 827-841. |
13 | Prasongthum N, Natewong P, Reubroycharoen P, et al. Solvent regeneration of a CO2-loaded BEA-AMP bi-blend amine solvent with the aid of a solid Brønsted Ce(SO4)2/ZrO2 superacid catalyst[J]. Energy & Fuels, 2019, 33(2): 1334-1343. |
14 | Gao H X, Huang Y F, Zhang X W, et al. Catalytic performance and mechanism of S O 4 2 - /ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution[J]. Applied Energy, 2020, 259: 114179. |
15 | Huang Y F, Zhang X W, Luo X, et al. Catalytic performance and mechanism of meso-microporous material β-SBA-15-supported FeZr catalysts for CO2 desorption in CO2-loaded aqueous amine solution[J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2698-2709. |
16 | Liu H L, Zhang X, Gao H X, et al. Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7656-7664. |
17 | Zhang X W, Hong J L, Liu H L, et al. S O 4 2 - /ZrO2 supported on γ-Al2O3 as a catalyst for CO2 desorption from CO2-loaded monoethanolamine solutions[J]. AIChE Journal, 2018, 64(11): 3988-4001. |
18 | Bhatti U H, Shah A K, Kim J N, et al. Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5862-5868. |
19 | Bairq Z A S, Gao H X, Murshed F A M, et al. Modified heterogeneous catalyst-aided regeneration of CO2 capture amines: a promising perspective for a drastic reduction in energy consumption[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9526-9536. |
20 | Wang T, Yu W, Liu F, et al. Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7830-7838. |
21 | Zhang J F, Qiao Y, Agar D W. Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture[J]. Chemical Engineering Research and Design, 2012, 90(6): 743-749. |
22 | Liu M L, Tang S Y, Ma K, et al. On the role of solid particles in CO2 bubble nucleation for solvent regeneration of MEA-based CO2 capture technology[J]. Greenhouse Gases: Science and Technology, 2019, 9(3): 553-566. |
23 | Jamal A, Meisen A, Lim C J. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor (Ⅰ): Experimental apparatus and mathematical modeling[J]. Chemical Engineering Science, 2006, 61(19): 6571-6589. |
24 | Jamal A, Meisen A, Lim C J. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor (Ⅱ): Experimental results and parameter estimation[J]. Chemical Engineering Science, 2006, 61(19): 6590-6603. |
25 | Monteiro J G M S, Svendsen H F. The N2O analogy in the CO2 capture context: literature review and thermodynamic modelling considerations[J]. Chemical Engineering Science, 2015, 126: 455-470. |
26 | Hartono A, Mba E O, Svendsen H F. Prediction of N2O solubility in alkanolamine solutions from the excess volume property[J]. Energy Procedia, 2013, 37: 1744-1750. |
27 | Hartono A, Mba E O, Svendsen H F. Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA)[J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1808-1816. |
28 | Youn J R, Suh N P. Processing of microcellular polyester composites[J]. Polymer Composites, 1985, 6(3): 175-180. |
29 | Malila J, Hyvärinen A P, Viisanen Y, et al. Displacement barrier heights from experimental nucleation rate data[J]. Atmospheric Research, 2008, 90(2/3/4): 303-312. |
30 | Wilt P M. Nucleation rates and bubble stability in water-carbon dioxide solutions[J]. Journal of Colloid and Interface Science, 1986, 112(2): 530-538. |
31 | Jones S F, Evans G M, Galvin K P. Bubble nucleation from gas cavities—a review[J]. Advances in Colloid and Interface Science, 1999, 80(1): 27-50. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[14] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 337
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||