化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4155-4165.doi: 10.11949/0438-1157.20201652

• 催化、动力学与反应器 • 上一篇    下一篇

混合离子液体催化反应精馏合成乙酸正己酯

宋振兴(),崔现宝(),张缨,张雪梅,何杰,冯天扬,王纪孝   

  1. 天津大学化工学院,化学工程联合国家重点实验室,天津 300350
  • 收稿日期:2020-11-16 修回日期:2021-01-20 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 崔现宝 E-mail:18568442038@163.com;cxb@tju.edu.cn
  • 作者简介:宋振兴(1996—),男,硕士研究生,18568442038@163.com
  • 基金资助:
    国家自然科学基金项目(21776201)

Synthesis of n-hexyl acetate via reactive distillation catalyzed by mixed ionic liquids

Zhenxing SONG(),Xianbao CUI(),Ying ZHANG,Xuemei ZHANG,Jie HE,Tianyang FENG,Jixiao WANG   

  1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
  • Received:2020-11-16 Revised:2021-01-20 Published:2021-08-05 Online:2021-08-05
  • Contact: Xianbao CUI E-mail:18568442038@163.com;cxb@tju.edu.cn

摘要:

离子液体催化反应精馏是提高酯交换平衡反应转化率的一种绿色有效方法。以离子液体1-丙基磺酸-3-甲基咪唑三氟甲烷磺酸盐([PSO3HMIm][OTf])和离子液体1-辛基-2,3-二甲基咪唑双(三氟甲烷磺酰)亚胺盐([OMMIm][Tf2N])的混合物作为乙酸甲酯和正己醇进行酯交换反应合成乙酸正己酯的催化剂,测定了酯交换反应动力学。探讨了混合比、反应温度、反应物初始摩尔比、催化剂浓度对反应速率和乙酸甲酯转化率的影响,考察了催化剂的回收性能。利用实验数据回归得出混合离子液体催化酯交换反应动力学方程。在反应动力学的基础上进行了乙酸甲酯和正己醇的酯交换反应精馏流程模拟,分析了理论板数、回流比、进料位置及反应段塔板数、催化剂用量、持液量等参数对反应精馏塔的影响。在优化的操作条件下,获得纯度为0.9993的乙酸正己酯产品。

关键词: 离子液体, 催化, 反应动力学, 反应精馏, 过程模拟

Abstract:

Ionic liquid catalytic reactive distillation is a green and effective method to improve the conversion rate of the transesterification equilibrium reaction. The mixture of 1-propylsulfonate-3-methylimidazolium trifluoromethane sulfonate ([PSO3HMIm][OTf]) and 1-octyl-2,3-dimethylimidazolium bis((trifluoromethyl)sulf-onyl)imide ([OMMIm][Tf2N])) were utilized as the catalyst for transesterification of methyl acetate with n-hexanol, and the reaction kinetics of the transesterification were measured. The effects of mixing ratio, reaction temperature, initial molar ratio of reactants and concentration of catalyst on reaction rate and the conversion of methyl acetate, and recovery performance of the catalyst were investigated. The reaction kinetic equation of the transesterification catalyzed by mixed ionic liquids was obtained by the correlation of experimental data. Based on the reaction kinetics, the reactive distillation process for transesterification of methyl acetate and n-hexanol was simulated, and the effects of theoretical stage number, reflux ratio, feed position, theoretical stages in reaction section, catalyst amount and liquid holdup on the reactive distillation column were analyzed. Under the optimized operating conditions, hexyl acetate product with purity of 0.9993 was obtained by the reactive distillation process.

Key words: ionic liquids, catalysis, reaction kinetics, reactive distillation, process simulation

中图分类号: 

  • TQ 032.4

表1

实验试剂"

试剂名称纯度/%供应商
乙酸甲酯(MeOAC)99.0上海阿拉丁生化科技股份有限公司
甲醇(MeOH)99.8凯玛特化工科技有限公司
正己醇(HeOH)99.8凯玛特化工科技有限公司
乙酸正己酯(HeAC)99.0上海麦克林生化科技有限公司
1-丙基磺酸-3-甲基咪唑三氟甲烷磺酸盐([PSO3HMIm][OTf])99.0兰州奥力科化工有限公司
1-丁基磺酸-3-甲基咪唑硫酸氢盐([BSO3HMIm][HSO4])99.0兰州奥力科化工有限公司
N-丁基磺酸吡啶三氟甲烷磺酸盐([BSO3HPy][OTf])99.0兰州奥力科化工有限公司
1-丁基磺酸-3-甲基咪唑三氟甲烷磺酸盐([BSO3HMIm][OTf])99.0兰州奥力科化工有限公司
1-丁基磺酸-3-甲基咪唑盐酸盐([BSO3HMIm][Cl])99.0兰州奥力科化工有限公司
1-辛基-2,3-二甲基咪唑双(三氟甲烷磺酰)亚胺盐([OMMIm][Tf2N])99.0兰州奥力科化工有限公司

图1

不同离子液体催化剂对酯交换反应的影响"

图2

不同[OMMIm][Tf2N]∶[PSO3HMIm][OTf]摩尔比对酯交换反应的影响"

图3

催化剂浓度对酯交换反应的影响"

图4

初始反应速率与催化剂浓度关系"

图5

反应温度对酯交换反应的影响"

图6

正己醇和乙酸甲酯初始摩尔比对酯交换反应的影响"

图7

混合离子液体催化剂的回收性能"

表2

NRTL模型参数"

ijBij/KBji/Kαij
乙酸甲酯甲醇214.419139.5160.3
乙酸甲酯正己醇522.257-222.81450.3
乙酸甲酯乙酸正己酯499-336.1270.3
甲醇正己醇516.202-301.0810.3364
甲醇乙酸正己酯101.869180.5730.3
正己醇乙酸正己酯-144.421354.820.3
乙酸甲酯[PSO3HMIm] [OTf]5360.95-3043.3330.2
乙酸甲酯[OMMIm][Tf2N]9079.14-536.90.3
甲醇[PSO3HMIm] [OTf]1676.0488-2365.707320.3
甲醇[OMMIm][Tf2N]-301.56230.090.3
正己醇[PSO3HMIm] [OTf]-855.274-1808.0090.2
正己醇[OMMIm][Tf2N]-4.3407-1432.650.3
乙酸正己酯[PSO3HMIm] [OTf]1723.06632-1685.64350.2
乙酸正己酯[OMMIm][Tf2N]610.14752-1299.82320.3
[PSO3HMIm] [OTf][OMMIm][Tf2N]2256.2141710.35840.3

图8

反应温度对化学平衡常数的影响"

表3

标准反应焓计算结果"

组分ΔfH0/(kJ/mol)ΔrHcal0/(kJ/mol)ΔrHexp0/(kJ/mol)
乙酸甲酯-411.95.27.67
正己醇-320.5
甲醇-200.9
乙酸正己酯-526.3

图9

催化反应精馏流程图"

图10

催化剂用量的影响"

图11

混合离子液体催化剂不同浓度下乙酸甲酯-甲醇体系的y-x相图"

图12

理论板数的影响"

表4

混合离子液体和反应物的进料位置及间隔板数的影响"

离子液体进料位置

正己醇

进料位置

乙酸甲酯混合物进料位置反应段进料间隔板数收率乙酸正己酯纯度
53050200.91800.9242
52450260.94540.9497
52050300.96170.9648
51550350.96720.9711
151550350.96690.9702
51050400.97830.9809
101050400.97880.9811
5646400.96360.9688
5848400.97100.9746
51050400.97830.9809
51252400.96190.9650

图13

回流比的影响"

图14

塔板持液量的影响"

图15

反应精馏塔中各组分液相浓度分布"

1 揭会民, 崔现宝, 彭艳枚, 等. 离子液体反应萃取精馏合成乙酸乙酯[J]. 化工学报, 2016, 67(2): 606-613.
Jie H M, Cui X B, Peng Y M, et al. Synthesis of ethyl acetate via reactive and extractive distillation column using ionic liquids as catalyst and entrainer[J]. CIESC Journal, 2016, 67(2): 606-613.
2 袁骏. 乙酸甲酯水解的工艺[J]. 化工进展, 2012, 31(S2): 265-270.
Yuan J. Advances in hydrolysis of methyl acetate[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 265-270.
3 李柏春, 耿春霞, 张文林, 等. 酯交换法制备乙酸正丁酯动力学研究[J]. 化学工程, 2016, 44(4): 59-63.
Li B C, Geng C X, Zhang W L, et al. Kinetics of n-butyl acetate prepared by trans-esterification[J]. Chemical Engineering (China), 2016, 44(4): 59-63.
4 Liu Y, Wei M, Gao L, et al. Kinetics of transesterification of methyl acetate and n-octanol catalyzed by cation exchange resins[J]. Korean Journal of Chemical Engineering, 2013, 30(5): 1039-1042.
5 Sert E, Atalay F S. Determination of adsorption and kinetic parameters for transesterification of methyl acetate with hexanol catalyzed by ion exchange resin[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6350-6355.
6 Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions[J]. Chemical Reviews, 1998, 98(1): 171-198.
7 Bożek-Winkler E, Gmehling J. Transesterification of methyl acetate and n-butanol catalyzed by amberlyst 15[J]. Industrial & Engineering Chemistry Research, 2006, 45(20): 6648-6654.
8 Jiménez L, Garvín A, Costa-López J. The production of butyl acetate and methanol via reactive and extractive distillation(Ⅰ): Chemical equilibrium, kinetics, and mass-transfer issues[J]. Industrial & Engineering Chemistry Research, 2002, 41(26): 6663-6669.
9 Jermy B R, Pandurangan A. A highly efficient catalyst for the esterification of acetic acid using n-butyl alcohol[J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1/2): 146-154.
10 Pappu V K S, Yanez A J, Peereboom L, et al. A kinetic model of the Amberlyst-15 catalyzed transesterification of methyl stearate with n-butanol[J]. Bioresource Technology, 2011, 102(5): 4270-4272.
11 Xiao Y, Cai W F, Sun H L, et al. Kinetics study and process simulation of transesterification of ethylene glycol with methyl acetate for ethylene glycol diacetate[J]. The Canadian Journal of Chemical Engineering, 2018, 96(3): 722-730.
12 Yang Z, Cui X B, Jie H M, et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(4): 1204-1215.
13 梁晓通, 李国兵, 沈京华, 等. 离子液体一步法催化合成4-乙酰胺基苯亚磺酸[J]. 化学工业与工程, 2020, 37(4): 7-14.
Liang X T, Li G B, Shen J H, et al. Catalytic synthesis of 4-acetamidobenzenesulfinic acid by ionic liquids in one step[J]. Chemical Industry and Engineering, 2020, 37(4): 7-14.
14 Zhang P B, Liu H, Fan M M, et al. A review on biodiesel production by transesterification catalyzed by ionic liquid catalysts[J]. Current Organic Chemistry, 2016, 20(7): 752-760.
15 Deshmukh K M, Qureshi Z S, Dhake K P, et al. Transesterification of dimethyl carbonate with phenol using Brønsted and Lewis acidic ionic liquids[J]. Catalysis Communications, 2010, 12(3): 207-211.
16 Niedermeyer H, Hallett J P, Villar-Garcia I J, et al. Mixtures of ionic liquids[J]. Chemical Society Reviews, 2012, 41(23): 7780-7802.
17 Chatel G, Pereira J F B, Debbeti V, et al. Mixing ionic liquids — “simple mixtures” or “double salts”?[J]. Green Chemistry, 2014, 16(4): 2051-2083.
18 Annat G, Forsyth M, MacFarlane D R. Ionic liquid mixtures—variations in physical properties and their origins in molecular structure[J]. The Journal of Physical Chemistry B, 2012, 116(28): 8251-8258.
19 Baltazar Q Q, Leininger S K, Anderson J L. Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds[J]. Journal of Chromatography A, 2008, 1182(1): 119-127.
20 Clough M T, Crick C R, Gräsvik J, et al. A physicochemical investigation of ionic liquid mixtures[J]. Chemical Science, 2015, 6(2): 1101-1114.
21 D'Anna F, Marullo S, Vitale P, et al. Binary mixtures of ionic liquids: a joint approach to investigate their properties and catalytic ability[J]. Chem Phys Chem, 2012, 13(7): 1877-1884.
22 Fox E T, Weaver J E F, Henderson W A. Tuning binary ionic liquid mixtures: linking alkyl chain length to phase behavior and ionic conductivity[J]. The Journal of Physical Chemistry C, 2012, 116(8): 5270-5274.
23 Larriba M, de Riva J, Navarro P, et al. COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf2] + [emim][DCA]} ionic liquid mixture[J]. Separation and Purification Technology, 2018, 190: 211-227.
24 Taige M, Hilbert D, Schubert T J S. Mixtures of ionic liquids as possible electrolytes for lithium ion batteries[J]. Zeitschrift Für Physikalische Chemie, 2012, 226(2): 129-139.
25 Yang Z, Cui X B, Yu X F, et al. Transesterification of methyl acetate with n-butanol catalyzed by single and mixed ionic liquids[J]. Catalysis Letters, 2015, 145(6): 1281-1289.
26 Peng X, Wang L K. Design and control of ionic liquid-catalyzed reactive distillation for n-butyl acetate production[J]. Chemical Engineering & Technology, 2015, 38(2): 223-234.
27 Zhang Z S, Wang C, Guang C, et al. Cost-saving and control investigation for isopentyl acetate ionic liquid catalyzed synthesis through conventional and dividing-wall reactive distillation[J]. Process Safety and Environmental Protection, 2019, 129: 89-102.
28 Yang J B, Cai D R, Zeng T, et al. Application of Brönsted acid ionic liquids as green catalyst in the synthesis of 2-propanol with reactive distillation[J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1561-1569.
29 Amarasekara A S. Acidic ionic liquids[J]. Chemical Reviews, 2016, 116(10): 6133-6183.
30 Sarma P, Dutta A K, Borah R. Design and exploration of —SO3H group functionalized Brønsted acidic ionic liquids (BAILs) as task-specific catalytic systems for organic reactions: a review of literature[J]. Catalysis Surveys from Asia, 2017, 21(2): 70-93.
31 Zhang Q Q, Cui X B, Feng T Y, et al. Hydrolysis of methyl acetate using ionic liquids as catalyst and solvent[J]. Molecular Catalysis, 2020, 484: 110785.
32 Ni L L, Xin J Y, Jiang K, et al. One-step conversion of biomass-derived furanics into aromatics by Brønsted acid ionic liquids at room temperature[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2541-2551.
33 Cui X, Zhang S, Shi F, et al. The influence of the acidity of ionic liquids on catalysis[J]. Chem Sus Chem, 2010, 3(9): 1043-1047.
34 He W S, Li L L, Huang Q J, et al. Highly efficient synthesis of phytosterol linolenate in the presence of Bronsted acidic ionic liquid[J]. Food Chemistry, 2018, 263: 1-7.
35 Krasovskiy V G, Chernikova E A, Glukhov L M, et al. Effect of hydroxyl groups in a cation structure on the properties of ionic liquids[J]. Russian Journal of Physical Chemistry A, 2018, 92(12): 2379-2385.
36 He R N, Zou Y, Dong Y B, et al. Kinetic study and process simulation of esterification of acetic acid and ethanol catalyzed by [HSO3-bmim][HSO4][J]. Chemical Engineering Research and Design, 2018, 137: 235-245.
37 Amarasekara A S, Owereh O S. Thermal properties of sulfonic acid group functionalized Brönsted acidic ionic liquids[J]. Journal of Thermal Analysis and Calorimetry, 2011, 103(3): 1027-1030.
38 Shang W Y, Cui X B, Yu X F, et al. Isobaric vapor-liquid equilibrium for methanol + methyl acetate with ionic liquids [OMMIM][Tf2N] and [OMIM][Tf2N] as entrainers at 101.3 kPa[J]. Fluid Phase Equilibria, 2018, 473: 90-97.
39 Athès V, Paricaud P, Ellaite M, et al. Vapour-liquid equilibria of aroma compounds in hydroalcoholic solutions: measurements with a recirculation method and modelling with the NRTL and COSMO-SAC approaches[J]. Fluid Phase Equilibria, 2008, 265(1/2): 139-154.
40 Dell'Era C, Pokki J P, Uusi-Kyyny P, et al. Vapour-liquid equilibrium for the systems diethyl sulphide + 1-butene, +cis-2-butene, +2-methylpropane, +2-methylpropene, +n-butane, +trans-2-butene[J]. Fluid Phase Equilibria, 2010, 291(2): 180-187.
41 Fang J, Zhao R, Su W Y, et al. A molecular design method based on the COSMO-SAC model for solvent selection in ionic liquid extractive distillation[J]. AIChE Journal, 2016, 62(8): 2853-2869.
42 Wang H X, Wu C M, Bu X W, et al. A benign preparation of sec-butanol via transesterification from sec-butyl acetate using the acidic imidazolium ionic liquids as catalysts[J]. Chemical Engineering Journal, 2014, 246: 366-372.
43 Peng Y M, Cui X B, Zhang Y, et al. Kinetics of transesterification of methyl acetate and ethanol catalyzed by ionic liquid[J]. International Journal of Chemical Kinetics, 2014, 46(2): 116-125.
44 Suo X M, Ye Q, Li R, et al. Investigation about energy saving for synthesis of isobutyl acetate in the reactive dividing-wall column[J]. Industrial & Engineering Chemistry Research, 2017, 56(19): 5607-5617.
[1] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[2] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[3] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[4] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[5] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[6] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[7] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[8] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[9] 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211.
[10] 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668.
[11] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[12] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[13] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[14] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[15] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!