化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2639-2646.DOI: 10.11949/0438-1157.20230180
龙臻1,2,3,4(), 王谨航1,2,3,4,5, 任俊杰1, 何勇1,2,3,4(), 周雪冰1,2,3,4, 梁德青1,2,3,4()
收稿日期:
2023-03-01
修回日期:
2023-05-16
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
何勇,梁德青
作者简介:
龙臻(1986—),女,博士,副研究员,longzhen@ms.giec.ac.cn
基金资助:
Zhen LONG1,2,3,4(), Jinhang WANG1,2,3,4,5, Junjie REN1, Yong HE1,2,3,4(), Xuebing ZHOU1,2,3,4, Deqing LIANG1,2,3,4()
Received:
2023-03-01
Revised:
2023-05-16
Online:
2023-06-05
Published:
2023-07-27
Contact:
Yong HE, Deqing LIANG
摘要:
利用自制的高压反应釜实验研究了离子液体N-丁基-N-甲基吡咯烷四氟硼酸盐([BMP][BF4])、动力学抑制剂聚乙烯己内酰胺(PVCap)及其二元复合物对CH4/C2H6/C3H8混合气体水合物生成动力学的影响,发现在任何浓度下(0.25%~2.0%,质量分数),[BMP][BF4]对混合气体水合物抑制能力远弱于PVCap,但对PVCap具有显著协同效应,且随着PVCap占比增大而增强。粉末X射线衍射(PXRD)和低温激光拉曼光谱测试结果证实,所有体系中形成的样品中均含sⅡ型和sⅠ型两种结构水合物,含PVCap体系中sⅡ/sⅠ水合物相对含量降低。低温冷冻电镜(Cryo-SEM)观测结果显示,添加单一PVCap及其与[BMP][BF4]的混合物会使水合物晶体的微观形貌更粗糙且多孔。
中图分类号:
龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646.
Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap[J]. CIESC Journal, 2023, 74(6): 2639-2646.
图3 0.25%(质量) [BMP][BF4]体系中CH4/C2H6/C3H8气体水合物生成过程压力-温度变化
Fig.3 Experimental procedure showing the pressure and temperature conditions for CH4/C2H6/C3H8 gas hydrate formation at 0.25% (mass) [BMP][BF4]
图4 不同抑制剂体系中CH4/C2H6/C3H8混合气体水合物生成过程压力随时间的变化
Fig.4 Changes of pressure with time during CH4/C2H6/C3H8 hydrate formed with pure water and different inhibitors
图6 不同配比组合抑制剂体系中CH4/C2H6/C3H8混合气体水合物生成过程压力随时间的变化
Fig.6 Variation of pressure with time during CH4/C2H6/C3H8 gas hydrate formation in the presence of 0.25% (mass) compound inhibitor with different composition ratios
图7 不同体系中生成的CH4/C2H6/C3H8混合气体水合物PXRD谱图a—纯水;b—0.25%(质量) [BMP][BF4];c—0.25%(质量) PVCap;d—0.25%(质量) [BMP][BF4]+PVCap (1∶2)
Fig.7 PXRD patterns of CH4/C2H6/C3H8 gas hydrate formed in different systems
图8 不同体系中生成的CH4/C2H6/C3H8混合气体水合物Raman谱图a—纯水;b—0.25%(质量) [BMP][BF4];c—0.25%(质量) PVCap;d—0.25%(质量) [BMP][BF4]+PVCap (1∶2)
Fig.8 Raman spectra of CH4/C2H6/C3H8 hydrate formed in different systems
图9 不同倍数下冰晶和不同体系中水合物的微观形貌
Fig.9 Cryo-SEM images of ice crystal with different magnifications and of hydrates formed in the presence of different inhibitors
1 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton, FL: CRC Press/Taylor & Francis, 2008. |
2 | Lee S Y, Holder G D. Methane hydrates potential as a future energy source[J]. Fuel Processing Technology, 2001, 71(1/2/3): 181-186. |
3 | Hammerschmidt E G. Formation of gas hydrates in natural gas transmission lines[J]. Industrial & Engineering Chemistry, 1934, 26(8): 851-855. |
4 | Du J F, Wang X S, Liu H, et al. Experiments and prediction of phase equilibrium conditions for methane hydrate formation in the NaCl, CaCl2, MgCl2 electrolyte solutions[J]. Fluid Phase Equilibria, 2019, 479: 1-8. |
5 | Mohammadi A H, Richon D. Phase equilibria of methane hydrates in the presence of methanol and/or ethylene glycol aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2010, 49(2): 925-928. |
6 | Kim H, Park J, Seo Y, et al. Hydrate risk management with aqueous ethylene glycol and electrolyte solutions in thermodynamically under-inhibition condition[J]. Chemical Engineering Science, 2017, 158: 172-180. |
7 | Kamal M S, Hussein I A, Sultan A S, et al. Application of various water soluble polymers in gas hydrate inhibition[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 206-225. |
8 | Wang Y H, Fan S S, Lang X M. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132. |
9 | 李锐, 宁伏龙, 张凌, 等. 低剂量水合物抑制剂的研究进展[J]. 石油化工, 2018, 47(2): 203-210. |
Li R, Ning F L, Zhang L, et al. Progress in the research of the low dosage hydrate inhibitors[J]. Petrochemical Technology, 2018, 47(2): 203-210. | |
10 | 闫柯乐, 吴伟然, 胡绪尧, 等. 天然气水合物动态防控技术研究及现场应用[J]. 应用化工, 2020, 49(4): 997-1001. |
Yan K L, Wu W R, Hu X Y, et al. Study on the natural gas hydrate kinetic control technology and application in SINOPEC[J]. Applied Chemical Industry, 2020, 49(4): 997-1001. | |
11 | Qin H B, Sun Z F, Wang X Q, et al. Synthesis and evaluation of two new kinetic hydrate inhibitors[J]. Energy & Fuels, 2015, 29(11): 7135-7141. |
12 | 唐翠萍, 张雅楠, 梁德青, 等. 聚乙烯己内酰胺链端改性及其对甲烷水合物形成的抑制作用研究[J]. 化工学报, 2022, 73(5): 2130-2139. |
Tang C P, Zhang Y N, Liang D Q, et al. Inhibition effect of chain end modified polyvinyl caprolactam on methane hydrate formation[J]. CIESC Journal, 2022, 73(5): 2130-2139. | |
13 | 王佳琪, 张昕宇, 贺佳乐, 等. 动力学水合物抑制剂性能与官能团作用研究进展及展望[J]. 中南大学学报(自然科学版), 2022, 53(3): 772-798. |
Wang J Q, Zhang X Y, He J L, et al. Research progress and prospects of performance of kinetic hydrate inhibitor and effect of functional group[J]. Journal of Central South University (Science and Technology), 2022, 53(3): 772-798. | |
14 | Cheng L W, Liao K, Li Z, et al. The invalidation mechanism of kinetic hydrate inhibitors under high subcooling conditions[J]. Chemical Engineering Science, 2019, 207: 305-316. |
15 | 隋金昊, 王智, 梁璇玑, 等. 动力学抑制剂与乙二醇协同作用下甲烷水合物再生成[J]. 化工进展, 2022, 41(10): 5373-5380. |
Sui J H, Wang Z, Liang X J, et al. Paired KHI-MEG for synergistic inhibition of methane hydrate reformation[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5373-5380. | |
16 | Zhao X, Qiu Z S, Zhou G W, et al. Synergism of thermodynamic hydrate inhibitors on the performance of poly (vinyl pyrrolidone) in deepwater drilling fluid[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 47-54. |
17 | Kim J, Shin K, Seo Y, et al. Synergistic hydrate inhibition of monoethylene glycol with poly(vinylcaprolactam) in thermodynamically underinhibited system[J]. The Journal of Physical Chemistry B, 2014, 118(30): 9065-9075. |
18 | Kelland M A, Dirdal E G, Ree L H S. Solvent synergists for improved kinetic hydrate inhibitor performance of poly(N-vinylcaprolactam)[J]. Energy & Fuels, 2020, 34(2): 1653-1663. |
19 | Zhang Q, Kawatani R, Ajiro H, et al. Optimizing the kinetic hydrate inhibition performance of N-alkyl-N-vinylamide copolymers[J]. Energy & Fuels, 2018, 32(4): 4925-4931. |
20 | Xu S R, Fan S S, Fang S T, et al. Excellent synergy effect on preventing CH4 hydrate formation when glycine meets polyvinylcaprolactam[J]. Fuel, 2017, 206: 19-26. |
21 | Altamash T, Qureshi M F, Aparicio S, et al. Gas hydrates inhibition via combined biomolecules and synergistic materials at wide process conditions[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 873-883. |
22 | Wang J L, Sun J S, Wang R, et al. Mechanisms of synergistic inhibition of hydrophilic amino acids with kinetic inhibitors on hydrate formation[J]. Fuel, 2022, 321: 124012. |
23 | Del Villano L, Kelland M A. An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on Structure Ⅱgas hydrate[J]. Chemical Engineering Science, 2010, 65(19): 5366-5372. |
24 | Chua P C, Kelland M A. Tetra (iso-hexyl) ammonium bromide—the most powerful quaternary ammonium-based tetrahydrofuran crystal growth inhibitor and synergist with polyvinylcaprolactam kinetic gas hydrate inhibitor[J]. Energy & Fuels, 2012, 26(2): 1160-1168. |
25 | Nakarit C, Kelland M A, Liu D J, et al. Cationic kinetic hydrate inhibitors and the effect on performance of incorporating cationic monomers into N-vinyl lactam copolymers[J]. Chemical Engineering Science, 2013, 102: 424-431. |
26 | Xiao C W, Adidharma H. Dual function inhibitors for methane hydrate[J]. Chemical Engineering Science, 2009, 64(7): 1522-1527. |
27 | Xiao C W, Wibisono N, Adidharma H. Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate[J]. Chemical Engineering Science, 2010, 65(10): 3080-3087. |
28 | Kim K S, Kang J W, Kang S P. Tuning ionic liquids for hydrate inhibition[J]. Chemical Communications, 2011, 47(22): 6341-6343. |
29 | Kang S P, Kim E S, Shin J Y, et al. Unusual synergy effect on methane hydrate inhibition when ionic liquid meets polymer[J]. RSC Advances, 2013, 3(43): 19920-19923. |
30 | Lee W, Shin J Y, Cha J H, et al. Inhibition effect of ionic liquids and their mixtures with poly(N-vinylcaprolactam) on methane hydrate formation[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 211-216. |
31 | Shen X D, Zhou X B, Liang D Q. Kinetic effects of ionic liquids on methane hydrate[J]. Energy & Fuels, 2019, 33(2): 1422-1432. |
32 | 任俊杰, 龙臻, 梁德青. 离子液体与PVP K90复合抑制剂对甲烷水合物的生成影响[J]. 化工学报, 2020, 71(11): 5256-5264. |
Ren J J, Long Z, Liang D Q. Effect of complex inhibitors containing ionic liquids and PVP K90 on formation of methane hydrate[J]. CIESC Journal, 2020, 71(11): 5256-5264. | |
33 | Ren J J, Lu Z L, Long Z, et al. Experimental study on the kinetic effect of N-butyl-N-methylpyrrolidinium tetrafluoroborate and poly (N-vinyl-caprolactam) on CH4 hydrate formation[J]. RSC Advances, 2020, 10(26): 15320-15327. |
34 | Lee W, Shin J Y, Kim K S, et al. Synergetic effect of ionic liquids on the kinetic inhibition performance of poly (N-vinylcaprolactam) for natural gas hydrate formation[J]. Energy & Fuels, 2016, 30(11): 9162-9169. |
35 | Kang S P, Jung T, Lee J W. Macroscopic and spectroscopic identifications of the synergetic inhibition of an ionic liquid on hydrate formations[J]. Chemical Engineering Science, 2016, 143: 270-275. |
36 | Long Z, Zhou X B, Lu Z L, et al. Kinetic inhibition performance of N-vinyl caprolactam/isopropylacrylamide copolymers on methane hydrate formation[J]. Energy, 2022, 242: 123056. |
37 | Abrahamsen E, Kelland M A. Comparison of kinetic hydrate inhibitor performance on structure Ⅰ and structure Ⅱ hydrate-forming gases for a range of polymer classes[J]. Energy & Fuels, 2018, 32(1): 342-351. |
38 | Stern L A, Lorenson T D. Grain-scale imaging and compositional characterization of cryo-preserved India NGHP 01 gas-hydrate-bearing cores[J]. Marine and Petroleum Geology, 2014, 58: 206-222. |
39 | Klapp S A, Bohrmann G, Kuhs W F, et al. Microstructures of structure Ⅰ and Ⅱ gas hydrates from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2010, 27(1): 116-125. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[6] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[11] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[12] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[15] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 238
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||