CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 743-759.DOI: 10.11949/0438-1157.20231279
• Reviews and monographs • Previous Articles Next Articles
Bangjun GUO1(), Linan JIA2, Xi ZHANG1,2()
Received:
2023-12-01
Revised:
2024-02-23
Online:
2024-05-11
Published:
2024-03-25
Contact:
Xi ZHANG
通讯作者:
张希
作者简介:
郭邦军(1989—),男,博士,助理研究员,guo.bangjun@sjtu.edu.cn
基金资助:
CLC Number:
Bangjun GUO, Linan JIA, Xi ZHANG. A review of NCM cathode and interface characteristics in all-solid-state lithium-ion battery with sulfide electrolytes[J]. CIESC Journal, 2024, 75(3): 743-759.
郭邦军, 贾理男, 张希. 全固态硫化物锂电池中NCM正极及其界面研究[J]. 化工学报, 2024, 75(3): 743-759.
Add to citation manager EndNote|Ris|BibTeX
改性策略 | 优点 | 缺点 | 文献 |
---|---|---|---|
新型合成方法 | 减少合成过程后续相变,消除正极表面晶体缺陷,阻止颗粒内部晶间裂纹扩展 | 实验探究性为主,实际成功率较低,目前无法满足大规模生产需求 | [ |
单晶化法 | 降低晶界应力,提升机械强度,均匀电化学反应,提高锂离子扩散系数,协调体积变化 | 制备工艺复杂,技术难度高,易产生杂相,倍率性能有待提升 | [ |
离子掺杂法 | 抑制脱锂过程中的不可逆相变,抑制循环过程中不可逆相变,强化化学键结构稳定性 | 掺杂后稳定性易产生不一致,掺杂工艺复杂且不稳定 | [ |
核壳构建与浓度梯度构建法 | 缓冲核壳内部应力,稳定粒子结构,均衡相变内应力,抑制裂纹生长 | 难以形成均一性包覆,包覆层比例有待改进 | [ |
Table 1 Modification strategies of NCM cathode materials
改性策略 | 优点 | 缺点 | 文献 |
---|---|---|---|
新型合成方法 | 减少合成过程后续相变,消除正极表面晶体缺陷,阻止颗粒内部晶间裂纹扩展 | 实验探究性为主,实际成功率较低,目前无法满足大规模生产需求 | [ |
单晶化法 | 降低晶界应力,提升机械强度,均匀电化学反应,提高锂离子扩散系数,协调体积变化 | 制备工艺复杂,技术难度高,易产生杂相,倍率性能有待提升 | [ |
离子掺杂法 | 抑制脱锂过程中的不可逆相变,抑制循环过程中不可逆相变,强化化学键结构稳定性 | 掺杂后稳定性易产生不一致,掺杂工艺复杂且不稳定 | [ |
核壳构建与浓度梯度构建法 | 缓冲核壳内部应力,稳定粒子结构,均衡相变内应力,抑制裂纹生长 | 难以形成均一性包覆,包覆层比例有待改进 | [ |
存在问题 | 问题描述 | 文献 |
---|---|---|
界面机械结构问题 | 体积的变化会引起电池内部的机械应力,导致微裂纹和接触损失,从而阻碍锂离子的输运,引起界面阻抗和容量损失,甚至导致与电解质的接触失效 | [ |
空间电荷层效应 | 硫化物电解质电极电势高于NCM三元正极电势,因此,锂离子会从硫化物电解质移动到正极,从而界面上会形成一定厚度的局部锂离子耗尽的空间电荷层,尤其是在电池高速充放电时,会限制锂离子的快速转移,进而影响电池倍率性能 | [ |
化学副反应与元素扩散 | NCM正极与硫化物电解质化学副反应与元素扩散主要源于两种材料自身本征的性质,因两种材料接触时,化学副反应与元素扩散便会自发发生 | [ |
电化学副反应 | NCM与硫化物的电化学副反应主要在电池循环过程中发生,由于NCM三元正极的工作电压较高,在硫化物电解质中,PS4基团与NCM三元正极之间存在高反应能量,导致不可避免的电化学副反应发生 | [ |
Table 2 The interface problems between NCM cathode and sulfide electrolyte
存在问题 | 问题描述 | 文献 |
---|---|---|
界面机械结构问题 | 体积的变化会引起电池内部的机械应力,导致微裂纹和接触损失,从而阻碍锂离子的输运,引起界面阻抗和容量损失,甚至导致与电解质的接触失效 | [ |
空间电荷层效应 | 硫化物电解质电极电势高于NCM三元正极电势,因此,锂离子会从硫化物电解质移动到正极,从而界面上会形成一定厚度的局部锂离子耗尽的空间电荷层,尤其是在电池高速充放电时,会限制锂离子的快速转移,进而影响电池倍率性能 | [ |
化学副反应与元素扩散 | NCM正极与硫化物电解质化学副反应与元素扩散主要源于两种材料自身本征的性质,因两种材料接触时,化学副反应与元素扩散便会自发发生 | [ |
电化学副反应 | NCM与硫化物的电化学副反应主要在电池循环过程中发生,由于NCM三元正极的工作电压较高,在硫化物电解质中,PS4基团与NCM三元正极之间存在高反应能量,导致不可避免的电化学副反应发生 | [ |
解决方案 | 具体方法 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
表面涂层法 | 使用液相法、固相烧结法、原子层沉积法、物理气相沉积法、化学气相沉积法等方法,在正极表面包裹一层缓冲层物质 | 抑制界面副反应,提升Li+的迁移能力,降低界面电阻,降低电子电导率,提升界面力学性能 | 厚度难以均匀控制,包覆涂层易与原NCM颗粒形成新的界面 | [ |
调整颗粒尺寸匹配法 | 利用外部机械力作用,使得研磨介质对原料进行碾磨、搅拌,使得原料颗粒反复地挤压、变形、断裂、焊合,通过球磨可以改变材料的颗粒尺寸,并去除表面杂质 | 优化正极NCM与电解质之间的配比,提升正极活性物质载量,提高锂离子传输效率 | 碾磨和搅拌过程中对正极颗粒造成破坏,NCM与电解质硬度差距大,匹配难度高 | [ |
Table 3 The solutions of interface problems between NCM cathode and sulfide electrolyte
解决方案 | 具体方法 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
表面涂层法 | 使用液相法、固相烧结法、原子层沉积法、物理气相沉积法、化学气相沉积法等方法,在正极表面包裹一层缓冲层物质 | 抑制界面副反应,提升Li+的迁移能力,降低界面电阻,降低电子电导率,提升界面力学性能 | 厚度难以均匀控制,包覆涂层易与原NCM颗粒形成新的界面 | [ |
调整颗粒尺寸匹配法 | 利用外部机械力作用,使得研磨介质对原料进行碾磨、搅拌,使得原料颗粒反复地挤压、变形、断裂、焊合,通过球磨可以改变材料的颗粒尺寸,并去除表面杂质 | 优化正极NCM与电解质之间的配比,提升正极活性物质载量,提高锂离子传输效率 | 碾磨和搅拌过程中对正极颗粒造成破坏,NCM与电解质硬度差距大,匹配难度高 | [ |
1 | Gao Z H, Sun H B, Fu L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): 1705702. |
2 | 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
Li H, Xu X X. R & D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
3 | Kalnaus S, Dudney N J, Westover A S, et al. Solid-state batteries: the critical role of mechanics[J]. Science, 2023, 381(6664): eabg5998. |
4 | Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10: 682-686. |
5 | Zhao Q, Stalin S, Zhao C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5: 229-252. |
6 | Xiao Y H, Wang Y, Bo S H, et al. Understanding interface stability in solid-state batteries[J]. Nature Reviews Materials, 2019, 5(2): 105-126. |
7 | Famprikis T, Canepa P, Dawson J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18: 1278-1291. |
8 | 张言, 王海, 刘朝孟, 等. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
Zhang Y, Wang H, Liu C M, et al. Research progress of nickel-rich ternary cathode material NCM for lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. | |
9 | Yu R H, Zeng W H, Liang Z, et al. Layer-by-layer delithiation during lattice collapse as the origin of planar gliding and microcracking in Ni-rich cathodes[J]. Cell Reports Physical Science, 2023, 4(7): 101480. |
10 | de Biasi L, Schwarz B, Brezesinski T, et al. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries[J]. Advanced Materials, 2019, 31(26): e1900985. |
11 | 黄文鹏, 孙国平, 陈新, 等. 镍钴锰酸锂正极材料研究进展[J]. 山东化工, 2021, 50(16): 104-106, 122. |
Huang W P, Sun G P, Chen X, et al. Research progress of LiNi x Co y Mn1- x- y O2 ternary cathode materials[J]. Shandong Chemical Industry, 2021, 50(16): 104-106, 122. | |
12 | Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 30(7): 642-643. |
13 | 吴彩云, 冯传启, 张朝峰, 等. 层状镍钴锰酸锂三元正极材料的研究进展[J]. 电池, 2022, 52(1): 3-7. |
Wu C Y, Feng C Q, Zhang C F, et al. Research progress in layered lithium nickel cobalt manganese oxide ternary cathode material[J]. Battery Bimonthly, 2022, 52(1): 3-7. | |
14 | Cui S H, Wei Y, Liu T C, et al. Optimized temperature effect of Li-ion diffusion with layer distance in Li(Ni x Mn y Co z )O2 cathode materials for high performance Li-ion battery[J]. ECS Meeting Abstracts, 2016, (2): 134. |
15 | Jiang M, Danilov D L, Eichel R A, et al. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(48): 2103005. |
16 | 肖忠良,周乘风,宋刘斌,等. 富镍锂离子电池三元材料NCM的研究进展[J]. 化工进展, 2020, 39(1): 216-223. |
Xiao Z L, Zhou C F, Song L B, et al. Research progress of ternary material NCM for nickel-rich lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 216-223. | |
17 | 张彬, 张萍, 向晓刚, 等. 不同钴含量对三元正极材料性能的影响研究[J]. 无机盐工业, 2021, 53(11): 91-94. |
Zhang B, Zhang P, Xiang X G, et al. Study on effect of different cobalt content on properties of ternary cathode materials[J]. Inorganic Chemicals Industry, 2021, 53(11): 91-94. | |
18 | Yu H J, Qian Y M, Otani M, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations[J]. Energy & Environmental Science, 2014, 7(3): 1068-1078. |
19 | Tian X L, Yi Y K, Fang B R, et al. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries[J]. Chemistry of Materials, 2020, 32(23): 9821-9848. |
20 | Yuan K, Li N, Ning R Q, et al. Stabilizing surface chemical and structural Ni-rich cathode via a non-destructive surface reinforcement strategy[J]. Nano Energy, 2020, 78: 105239. |
21 | Tang Z F, Bao J J, Du Q X, et al. Surface surgery of the nickel-rich cathode material LiNi0.815Co0.15Al0.035O2: toward a complete and ordered surface layered structure and better electrochemical properties[J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34879-34887. |
22 | Su Y F, Zhang Q Y, Chen L, et al. Riveting dislocation motion: the inspiring role of oxygen vacancies in the structural stability of Ni-rich cathode materials[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37208-37217. |
23 | Qian G N, Zhang Y T, Li L S, et al. Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture[J]. Energy Storage Materials, 2020, 27: 140-149. |
24 | Wang Y Z, Wang E R, Zhang X, et al. High-voltage "single-crystal" cathode materials for lithium-ion batteries[J]. Energy & Fuels, 2021, 35(3): 1918-1932. |
25 | Lv H J, Li C L, Zhao Z K, et al. A review: modification strategies of nickel-rich layer structure cathode (Ni≥0.8) materials for lithium ion power batteries[J]. Journal of Energy Chemistry, 2021, 60: 435-450. |
26 | Xu X, Huo H, Jian J Y, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(15): 1803963. |
27 | 马爱军, 曹征领, 陈永炜, 等. 三元层状正极材料失效机理及改性研究进展[J]. 浙江电力, 2021, 40(1): 106-115. |
Ma A J, Cao Z L, Chen Y W, et al. Degradation mechanisms and modification research progress of Li[Ni1- x M x ]O2 layered cathode materials[J]. Zhejiang Electric Power, 2021, 40(1): 106-115. | |
28 | Wu K, Wang J Y, Li Q, et al. In situ synthesis of a nickel concentration gradient structure of Ni-rich LiNi0.8Co0.15Al0.05O2 with promising superior electrochemical properties at high cut-off voltage[J]. Nanoscale, 2020, 12(20): 11182-11191. |
29 | Pan C C, Zhu Y R, Yang Y C, et al. Influences of transition metal on structural and electrochemical properties of Li[Ni x Co y Mn z ]O2(0.6≤x≤0.8) cathode materials for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1396-1402. |
30 | Chu M H, Huang Z Y, Zhang T L, et al. Enhancing the electrochemical performance and structural stability of Ni-rich layered cathode materials via dual-site doping[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 19950-19958. |
31 | Kim U H, Park G T, Conlin P, et al. Cation ordered Ni-rich layered cathode for ultra-long battery life[J]. Energy & Environmental Science, 2021, 14(3): 1573-1583. |
32 | Su Y F, Chen G, Chen L, et al. High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36697-36704. |
33 | Zhang J C, Yang Z Z, Gao R, et al. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29794-29803. |
34 | Jun D W, Yoon C S, Kim U H, et al. High-energy density core-shell structured Li[Ni0.95Co0.025Mn0.025]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017, 29(12): 5048-5052. |
35 | 赵占, 张禛, 董增波, 等. 利用层状双氢氧化物涂层增强富镍正极材料的循环稳定性[J]. 电源技术, 2023, 47(8): 1006-1009. |
Zhao Z, Zhang Z, Dong Z B, et al. Enhancement of cyclic stability of nickel-rich cathode materials by layered double hydroxide coating[J]. Chinese Journal of Power Sources, 2023, 47(8): 1006-1009. | |
36 | Kim U H, Park J H, Aishova A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries[J]. Advanced Energy Materials, 2021, 11(25): 2100884. |
37 | Zheng N F, Bu X H, Feng P Y. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 426: 428-432. |
38 | 朱鑫鑫, 蒋伟, 万正威, 等. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
Zhu X X, Jiang W, Wan Z W, et al. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. | |
39 | 肖维东. 硫化物电解质在全固态电池中的应用及电化学性能研究[D]. 郑州: 郑州大学, 2020. |
Xiao W D. Application of sulfide electrolyte in all-solid-state battery and its electrochemical performance[D].Zhengzhou: Zhengzhou University, 2020. | |
40 | Wu J H, Shen L, Zhang Z H, et al. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J]. Electrochemical Energy Reviews, 2021, 4(1): 101-135. |
41 | Jiang H Y, Mu X W, Pan H, et al. Insights into interfacial chemistry of Ni-rich cathodes and sulphide-based electrolytes in all-solid-state lithium batteries[J]. Chemical Communications, 2022, 58(40): 5924-5947. |
42 | Popovic L, Manoun B, de Waal D, et al. Raman spectroscopic study of phase transitions in Li3PO4 [J]. Journal of Raman Spectroscopy, 2003, 34(1): 77-83. |
43 | Deiseroth H J, Kong S T, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie International Edition, 2008, 47(4): 755-758. |
44 | Mercier R, Malugani J P, Fahys B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics, 1981, 5: 663-666. |
45 | Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(7): A742. |
46 | Kato Y, Kawamoto K, Kanno R, et al. Discharge performance of all-solid-state battery using a lithium superionic conductor Li10GeP2S12 [J]. Electrochemistry, 2012, 80(10): 749-751. |
47 | Wang Y X, Lu D P, Bowden M, et al. Mechanism of formation of Li7P3S11 solid electrolytes through liquid phase synthesis[J]. Chemistry of Materials, 2018, 30(3): 990-997. |
48 | Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): 16030. |
49 | Zhang Q, Cao D X, Ma Y, et al. Solid-state batteries: sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): 1970311. |
50 | Chen S J, Xie D J, Liu G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
51 | Shi T, Tu Q S, Tian Y S, et al. High active material loading in all-solid-state battery electrode via particle size optimization[J]. Advanced Energy Materials, 2020, 10(1): 1902881. |
52 | Yu T Y, Lee H U, Lee J W, et al. Limitation of Ni-rich layered cathodes in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2023, 11(45): 24629-24636. |
53 | Wang S, Wu Y J, Ma T H, et al. Thermal stability between sulfide solid electrolytes and oxide cathode[J]. ACS Nano, 2022, 16(10): 16158-16176. |
54 | Wu Y J, Wang S, Li H, et al. Progress in thermal stability of all-solid-state-Li-ion-batteries[J]. InfoMat, 2021, 3(8): 827-853. |
55 | Rui X Y, Ren D S, Liu X, et al. Distinct thermal runaway mechanisms of sulfide-based all-solid-state batteries[J]. Energy & Environmental Science, 2023, 16(8): 3552-3563. |
56 | Wu Y J, Xu J, Lu P S, et al. Thermal stability of sulfide solid electrolyte with lithium metal[J]. Advanced Energy Materials, 2023, 13(36): 2301336. |
57 | Yang S J, Hu J K, Jiang F N, et al. Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells[J]. eTransportation, 2023, 18: 100279. |
58 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
Wu J H, Yao X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
59 | Koerver R, Aygün I, Leichtweiß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-5582. |
60 | Liu X S, Zheng B Z, Zhao J, et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries[J]. Advanced Energy Materials, 2021, 11(8): 2003583. |
61 | Zhang Y Q, Tian Y S, Xiao Y H, et al. Direct visualization of the interfacial degradation of cathode coatings in solid state batteries: a combined experimental and computational study[J]. Advanced Energy Materials, 2020, 10(27): 1903778. |
62 | Nishio K, Ohnishi T, Osada M, et al. Influences of high deposition rate on LiCoO2 epitaxial films prepared by pulsed laser deposition[J]. Solid State Ionics, 2016, 285: 91-95. |
63 | Ohta N, Takada K, Zhang L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials, 2006, 18(17): 2226-2229. |
64 | Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
65 | Banerjee A, Wang X F, Fang C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chemical Reviews, 2020, 120(14): 6878-6933. |
66 | 冯吴亮, 王飞, 周星, 等. 固态电解质与电极界面的稳定性[J]. 物理学报, 2020, 69(22): 131-143. |
Feng W L, Wang F, Zhou X, et al. Stability of interphase between solid state electrolyte and electrode[J]. Acta Physica Sinica, 2020, 69(22): 131-143. | |
67 | Jung S K, Gwon H, Lee S S, et al. Understanding the effects of chemical reactions at the cathode-electrolyte interface in sulfide based all-solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(40): 22967-22976. |
68 | Sakuda A, Hayashi A, Tatsumisago M. Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chemistry of Materials, 2010, 22(3): 949-956. |
69 | Kim A Y, Strauss F, Bartsch T, et al. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries[J]. Chemistry of Materials, 2019, 31(23): 9664-9672. |
70 | Yi J G, He P G, Liu H, et al. Manipulating interfacial stability of LiNi0.5Co0.3Mn0.2O2 cathode with sulfide electrolyte by nanosized LLTO coating to achieve high-performance all-solid-state lithium batterie[J]. Journal of Energy Chemistry, 2021, 52: 202-209. |
71 | Zhu Y Z, He X F, Mo Y F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
72 | Yusuke M, Akihiro S, Satoshi K, et al. Design of cathode coating using niobate and phosphate hybrid material for sulfide-based solid-state battery[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36086-36095. |
73 | Seino Y, Ota T, Takada K. High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte[J]. Journal of Power Sources, 2011, 196(15): 6488-6492. |
74 | Yu H F, Wang S L, Hu Y J, et al. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability[J]. Green Energy & Environment, 2022, 7(2): 266-274. |
75 | Takada K, Ohta N, Zhang L Q, et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte[J]. Solid State Ionics, 2012, 225: 594-597. |
76 | Shi J, Li P, Han K, et al. High-rate and durable sulfide-based all-solid-state lithium battery with in situ Li2O buffering[J]. Energy Storage Materials, 2022, 51: 306-316. |
77 | Wu E A, Jo C, Tan D H S, et al. A facile, dry-processed lithium borate-based cathode coating for improved all-solid-state battery performance[J]. Journal of the Electrochemical Society, 2020, 167(13): 130516. |
78 | George S M. Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131. |
79 | Li X, Ren Z H, Norouzi Banis M, et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2019, 4(10): 2480-2488. |
80 | Meng X B, Liu J, Li X F, et al. Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes[J]. RSC Advances, 2013, 3(20): 7285-7288. |
81 | Wang B Q, Liu J, Norouzi Banis M, et al. Atomic layer deposited lithium silicates as solid-state electrolytes for all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31786-31793. |
82 | Wang B Q, Liu J, Sun Q, et al. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries[J]. Nanotechnology, 2014, 25(50): 504007. |
83 | Lobe S, Bauer A, Uhlenbruck S, et al. Physical vapor deposition in solid-state battery development: from materials to devices[J]. Advanced Science, 2021, 8(11): 2002044. |
84 | 李黎明, 胡社军, 赵灵智, 等. 物理气相沉积制备锂离子电池正极薄膜研究进展[J]. 材料导报, 2006, 20(S2): 296-298. |
Li L M, Hu S J, Zhao L Z, et al. Research progress in preparation of anode thin films for lithium ion batteries by physical vapor deposition[J]. Materials Reports, 2006, 20(S2): 296-298. | |
85 | Yubuchi S, Ito Y, Matsuyama T, et al. 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics, 2016, 285: 79-82. |
86 | Visbal H, Aihara Y, Ito S, et al. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics[J]. Journal of Power Sources, 2016, 314: 85-92. |
87 | Jiang W, Zhu X X, Huang R Z, et al. Revealing the design principles of Ni-rich cathodes for all-solid-state batteries[J]. Advanced Energy Materials, 2022, 12(13): 2103473. |
[1] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, (): 1-9. |
[2] | Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC [J]. CIESC Journal, 2024, 75(3): 974-986. |
[3] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, (): 1-16. |
[4] | Zhengfeng WANG, Yuhang XIE, Yongchun FAN, Weike LI, Qian FU. Active carbons supported Ni-N-C catalysts for enhanced Faraday efficiency of electrolytic bicarbonate [J]. CIESC Journal, 2023, 74(11): 4570-4577. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[9] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[10] | Linan JIA, Yibo DU, Bangjun GUO, Xi ZHANG. Recent progress on anode for sulfide-based all-solid-state lithium batteries [J]. CIESC Journal, 2022, 73(12): 5289-5304. |
[11] | Huiying ZHANG, Weihua CAI, Ming GAO, Yuhang WANG, Suoying HE. Cold-start stack temperature prediction model for proton exchange membrane fuel cells [J]. CIESC Journal, 2022, 73(11): 5056-5064. |
[12] | Yizhou ZHANG, Xianhong WU, Zhiyu WANG, Jieshan QIU. Biomass-derived B/N co-doped carbon nanosheets decorated with single-layered MoS2 for sodium storage [J]. CIESC Journal, 2021, 72(12): 6371-6379. |
[13] | Xuming LIANG, Yongchao SHEN, Dong WEI, Qian GUO, Zhi GAO. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics [J]. CIESC Journal, 2021, 72(8): 4361-4370. |
[14] | YANG Yuanyuan, WANG Jinzhi, DU Junzhe, DU Aobing, ZHAO Jingwen, CUI Guanglei. Role of magnesium-chlorine solvation structures in magnesium electrolytes [J]. CIESC Journal, 2021, 72(6): 3116-3129. |
[15] | ZHANG Jin, GUO Zhibin, ZHANG Jujia, WANG Haining, XIANG Yan, JIANG San Ping, LU Shanfu. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack [J]. CIESC Journal, 2021, 72(1): 589-596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||