1 |
ZhangH, XuanG, YangD, et al. Emergy analysis of organic Rankine cycle (ORC) for waste heat power generation[J]. Journal of Cleaner Production, 2018, 183: 1207-1215.
|
2 |
ManzelaA A, HanriotS M, Cabezas-GómezL, et al. Using engine exhaust gas as energy source for an absorption refrigeration system[J]. Applied Energy, 2010, 87(4): 1141-1148.
|
3 |
LiQ, SunZ, WangH, et al. Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured bi-decorated g-C3N4 nanohybrid under visible-light irradiation[J]. Journal of CO2 Utilization, 2018, 28: 126-136.
|
4 |
SalmiW, VanttolaJ, ElgM, et al. Using waste heat of ship as energy source for an absorption refrigeration system[J]. Applied Thermal Engineering, 2017, 115(Complete): 501-516.
|
5 |
EbrahimiK, JonesG F, FleischerA S. Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration[J]. Applied Energy, 2015, 139: 384-397.
|
6 |
李星, 徐士鸣, 李见波. 基于R124-DMAC为工质对的余热吸收式制冷[J]. 化工学报, 2015, 66(5): 1883-1890.
|
|
LiX, XuS M, LiJ B. Absorption refrigeration cycle driven by waste heat using R124-DMAC as working fluids[J]. CIESC Journal, 2015, 66(5): 1883-1890.
|
7 |
王刚, 解国珍, 王亮亮. 溴化锂吸收式循环的内外热物理参数与机组制冷特性耦合[J]. 化工学报, 2012, 63(S2): 1-7.
|
|
WangG, XieG Z, WangL L. Coupling of lithium bromide absorption cycle inside and outside thermal physical parameters and refrigeration unit characteristics[J]. CIESC Journal, 2012, 63(S2): 1-7.
|
8 |
FarshiL G, FerreiraC A I, MahmoudiS M S, et al. First and second law analysis of ammonia/salt absorption refrigeration systems[J]. International Journal of Refrigeration, 2014, 40(4): 111-121.
|
9 |
刘向阳, 潘培, 彭三国, 等. 氢氟烃在离子液体[HMIM][PF6]中的扩散系数和亨利常数[J]. 化工学报, 2017, 68(12): 4486-4493.
|
|
LiuX Y, PanP, PengS G, et al. Diffusion coefficients and Henry’s constants of six hydrofluorocarbons in ionic liquid [HMIM][PF6][J]. CIESC Journal, 2017, 68(12): 4486-4493.
|
10 |
RenW, ScurtoA M. Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1, 1, 1, 2-tetrafluoroethane (R-134a)[J]. Fluid Phase Equilibria, 2009, 286(1): 1-7.
|
11 |
WuW, WangB, ShiW, et al. Absorption heating technologies: a review and perspective[J]. Applied Energy, 2014, 130(Complete): 51-71.
|
12 |
WangK, AbdelazizO, KisariP, et al. State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps[J]. International Journal of Refrigeration, 2011, 34(6): 1325-1337.
|
13 |
AndersonJ L, DixonJ K, BrenneckeJ F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3 -methylpyridinium bis (trifluoromethylsulfonyl)imide: comparison to other ionic liquids[J]. Accounts of Chemical Research, 2007, 40 (11): 1208-1216.
|
14 |
ZhangS, SunN, HeX, et al. Physical properties of ionic liquids: database and evaluation[J]. Journal of Physical & Chemical Reference Data, 2006, 35(4): 1475-1517.
|
15 |
KimS, KohlP A . Theoretical and experimental investigation of an absorption refrigeration system using R134/[bmim][PF6] working fluid[J]. Industrial & Engineering Chemistry Research, 2013, 52(37): 13459–13465.
|
16 |
FallanzaM, OrtizA, GorriD, et al. Propylene and propane solubility in imidazolium, pyridinium, and tetralkylammonium based ionic liquids containing a silver salt[J]. Journal of Chemical & Engineering Data, 2013, 58(8): 2147-2153.
|
17 |
LiuX, HeM, LvN, et al. Solubilities of R-161 and R-143a in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide[J]. Fluid Phase Equilibria, 2015, 388: 37-42.
|
18 |
ShiflettM B, YokozekiA. Gaseous absorption of fluoromethane, fluoroethane, and 1, 1, 2, 2-tetrafluoroethane in 1-butyl-3- methylimidazolium hexafluorophosphate[J]. Industrial & Engineering Chemistry Research, 2006, 45(18): 6375-6382.
|
19 |
MondéjarM E, McLindenM D, LemmonE W. Thermodynamic properties of trans-1-chloro-3, 3, 3- trifluoropropene (R1233zd(E)): vapor pressure, (p, ρ, T) behavior, and speed of sound measurements, and equation of state[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2477-2489.
|
20 |
HulseR J, BasuR S, SinghR R, et al. Physical properties of HCFO-1233zd (E)[J]. Journal of Chemical & Engineering Data, 2012, 57(12): 3581-3586.
|
21 |
SánchezD, CabelloR, LlopisR, et al. Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives[J]. International Journal of Refrigeration, 2017, 74: 269-282.
|
22 |
CamperD, BeckerC, KovalC, et al. Diffusion and solubility measurements in room temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 445-450.
|
23 |
ShokouhiM, AdibiM, JaliliA H, et al. Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl) -3-methylimidazolium tetrafluoroborate[J]. Journal of Chemical & Engineering Data, 2010, 55(4): 1663-1668.
|
24 |
LiuX, PanP, YangF, et al. Solubilities and diffusivities of R227ea, R236fa and R245fa in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide[J]. The Journal of Chemical Thermodynamics, 2018, 123: 158-164.
|
25 |
ShokouhiM, AdibiM, JaliliA H, et al. Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl) -3-methylimidazolium tetrafluoroborate[J]. Journal of Chemical & Engineering Data, 2010, 55(4): 1663-1668.
|
26 |
MaogangH, PeiP, FengY, et al. Gaseous absorption of trans-1-chloro-3,3,3-trifluoropropene in three immidazolium-based ionic liquids[J]. Journal of Chemical and Engineering Data, 2018, 63: 1780-1788.
|
27 |
RenonH, PrausnitzJ M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144.
|
28 |
ShiflettM B, YokozekiA. Solubility and diffusivity of hydrofluorocarbons in room‐temperature ionic liquids[J]. AIChE Journal, 2006, 52(3): 1205-1219.
|
29 |
KrynickiK, GreenC D, SawyerD W. Pressure and temperature dependence of self-diffusion in water[J]. Faraday Discussions of the Chemical Society, 1978, 66: 199-208.
|
30 |
RichterJ, LeuchterA, GroßerN. Digital image holography for diffusion measurements in molten salts and ionic liquids—method and first results[J]. Journal of Molecular Liquids, 2003, 103: 359-370.
|