化工学报 ›› 2024, Vol. 75 ›› Issue (11): 4196-4204.DOI: 10.11949/0438-1157.20240727
收稿日期:2024-07-01
修回日期:2024-07-29
出版日期:2024-11-25
发布日期:2024-12-26
通讯作者:
魏进家
作者简介:冀昕宇(1997—),男,博士研究生,jxy971030@stu.xjtu.edu.cn
基金资助:
Xinyu JI(
), Yuantong ZHANG, Xiaoping YANG, Jinjia WEI(
)
Received:2024-07-01
Revised:2024-07-29
Online:2024-11-25
Published:2024-12-26
Contact:
Jinjia WEI
摘要:
为实现高热通量电子器件冷却,以HFE-7100作为工作流体,对3种楔形歧管微通道流动沸腾特性进行实验研究,并与常规的矩形歧管微通道进行对比,讨论了不同流量和过冷度条件下两种歧管几何形状和两种表面强化结构对沸腾传热系数、临界热通量和流动压降的影响。结果表明:楔形歧管结构能够促进流型由搅拌流转变为环状流,并提高流体输送效率与蒸汽排放效率,从而在改善换热性能的同时降低流动压降。与微针翅结构相比,采用激光烧蚀的多孔表面提供了一种简单便捷的强化沸腾换热的方法,能够极大地拓展换热表面,提供大量的成核位点,显著提高临界热通量(CHF)。将楔形歧管供液结构与多孔微通道相结合,歧管微通道平均两相传热系数提高了21.6%,临界热通量提高了30.4%,两相压降降低了12.7%,实现微通道散热器综合性能的显著提升。
中图分类号:
冀昕宇, 张芫通, 杨小平, 魏进家. 楔形歧管微通道流动与沸腾换热[J]. 化工学报, 2024, 75(11): 4196-4204.
Xinyu JI, Yuantong ZHANG, Xiaoping YANG, Jinjia WEI. Flow and boiling heat transfer in wedge-shaped manifold microchannel[J]. CIESC Journal, 2024, 75(11): 4196-4204.
| 结构 | MMC-1 | MMC-2 | MMC-3 | MMC-4 | |
|---|---|---|---|---|---|
| 歧管通道 | 长度/mm | 10 | 10 | 10 | 10 |
| 宽度/mm | 0.8 | 0.3~1.1 | 0.3~1.1 | 0.3~1.1 | |
| 高度/mm | 0.5 | 0.5 | 0.5 | 0.5 | |
| 微通道 | 长度/mm | 10 | 10 | 10 | 10 |
| 宽度/mm | 0.3 | 0.3 | 0.3 | 0.3 | |
| 高度/mm | 0.5 | 0.5 | 0.5 | 0.5 | |
| 数量/个 | 17 | 17 | 17 | 17 | |
| 表面类型 | 光滑 | 光滑 | 多孔 | 针肋烧蚀 | |
表1 4种歧管微通道散热器的结构参数
Table 1 Parameters of four manifold microchannel heat sinks
| 结构 | MMC-1 | MMC-2 | MMC-3 | MMC-4 | |
|---|---|---|---|---|---|
| 歧管通道 | 长度/mm | 10 | 10 | 10 | 10 |
| 宽度/mm | 0.8 | 0.3~1.1 | 0.3~1.1 | 0.3~1.1 | |
| 高度/mm | 0.5 | 0.5 | 0.5 | 0.5 | |
| 微通道 | 长度/mm | 10 | 10 | 10 | 10 |
| 宽度/mm | 0.3 | 0.3 | 0.3 | 0.3 | |
| 高度/mm | 0.5 | 0.5 | 0.5 | 0.5 | |
| 数量/个 | 17 | 17 | 17 | 17 | |
| 表面类型 | 光滑 | 光滑 | 多孔 | 针肋烧蚀 | |
| 实验参数 | 不确定性 |
|---|---|
| 直流电源电压 U/V | ± 0.05% |
| 直流电源电流 I/A | ± 0.1% |
| 流体温度或表面温度 T/K | ± 0.5 K |
| 差压 Δp/kPa | ± 0.075% FS |
| 体积流量 V/(L/min) | ± 0.1% FS |
| 热通量 qloss/(W/cm2) | 4.3% |
| 传热系数 h/(W/(m2·K)) | 9.6% |
表2 各项实验参数的不确定性
Table 2 Uncertainties in various parameters
| 实验参数 | 不确定性 |
|---|---|
| 直流电源电压 U/V | ± 0.05% |
| 直流电源电流 I/A | ± 0.1% |
| 流体温度或表面温度 T/K | ± 0.5 K |
| 差压 Δp/kPa | ± 0.075% FS |
| 体积流量 V/(L/min) | ± 0.1% FS |
| 热通量 qloss/(W/cm2) | 4.3% |
| 传热系数 h/(W/(m2·K)) | 9.6% |
| 1 | Singh S, Malik A, Mali H S. A critical review on single-phase thermo-hydraulic enhancement in geometrically modified microchannel devices[J]. Applied Thermal Engineering, 2023, 235: 121729. |
| 2 | Dong W L, Zhang X L, Liu B L, et al. Research progress on passive enhanced heat transfer technology in microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2024, 220: 125001. |
| 3 | 梁迪, 李晓凤, 杨卓, 等. 微通道换热器研究与应用进展综述[J]. 制冷与空调 (四川), 2023, 37(2): 217-224. |
| Liang D, Li X F, Yang Z, et al. Review on research and application of microchannel heat exchanger[J]. Refrigeration & Air Conditioning, 2023, 37(2): 217-224. | |
| 4 | 孙海鸥, 符昊, 殷越, 等. 带半椭球凹坑微通道流动换热的数值模拟[J]. 热能动力工程, 2020, 35(9): 104-111. |
| Sun H O, Fu H, Yin Y, et al. Numerical simulation of flow and heat transfer of microchannel with semi-ellipsoidal dimples[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(9): 104-111. | |
| 5 | 黄秉欢, 米创, 李逵, 等. 微通道中凹穴复合肋片流动和换热特性研究[J]. 制冷学报, 2023, 44(4): 44-50. |
| Huang B H, Mi C, Li K, et al. Investigation of flow and heat transfer characteristics for fins compound with cavities in microchannels[J]. Journal of Refrigeration, 2023, 44(4): 44-50. | |
| 6 | Zhou J Y, Luo X P, Pan Y C, et al. Flow boiling heat transfer coefficient and pressure drop in minichannels with artificial activation cavities by direct metal laser sintering[J]. Applied Thermal Engineering, 2019, 160: 113837. |
| 7 | 刘帆, 张芫通, 陶成, 等. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
| Liu F, Zhang Y T, Tao C, et al. Performance of manifold microchannel liquid cooling[J]. CIESC Journal, 2024, 75(5): 1777-1786. | |
| 8 | Bhandari P, Rawat K S, Prajapati Y K, et al. Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: a review[J]. Journal of Energy Storage, 2023, 66: 107548. |
| 9 | Alnaimat F, Rahhal A, Mathew B. Thermal and hydraulic performance investigation of microchannel heat sink with sidewall square pin-fins[J]. Results in Engineering, 2024, 21: 101896. |
| 10 | 常志昊, 崔晓钰, 耿晖, 等. 两种印刷电路板式微通道节流制冷器性能实验研究[J]. 化工学报, 2021, 72(4): 2027-2037. |
| Chang Z H, Cui X Y, Geng H, et al. Experimental study on performance of two types of printed circuit board microchannel J-T coolers[J]. CIESC Journal, 2021, 72(4): 2027-2037. | |
| 11 | 李辉, 吴明昊, 谷晓建, 等. 正弦波纹微通道内单相流动及换热特性数值研究[J]. 热能动力工程, 2024, 39(5): 76-85. |
| Li H, Wu M H, Gu X J, et al. Numerical study on single-phase flow and heat transfer characteristics in sinusoidal wavy microchannels[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(5): 76-85. | |
| 12 | 刘兆轩, 张程宾, 韩群, 等. 锯齿型微通道流动与传热特性数值模拟[J]. 化工进展, 2023, 42(11): 5622-5636. |
| Liu Z X, Zhang C B, Han Q, et al. Numerical simulation of fluid flow and heat transfer characteristics in a saw-like microchannel[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5622-5636. | |
| 13 | Peng Y, Li Z B, Li S B, et al. The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink[J]. International Journal of Thermal Sciences, 2021, 163: 106831. |
| 14 | 孙明美, 贾力, 银了飞, 等. 多孔材料微通道流动沸腾可视化实验研究[J]. 工程热物理学报, 2022, 43(1): 226-232. |
| Sun M M, Jia L, Yin L F, et al. Experimental study on visualization of flow boiling in porous microchannels[J]. Journal of Engineering Thermophysics, 2022, 43(1): 226-232. | |
| 15 | Kim K, Kong D, Kim Y, et al. Enhanced boiling heat transfer via microporous copper surface integration in a manifold microgap[J]. Applied Thermal Engineering, 2024, 241: 122325. |
| 16 | 曾龙, 郑贵森, 邓大祥, 等. 多孔壁面微通道换热性能的实验研究[J]. 化工进展, 2022, 41(9): 4625-4634. |
| Zeng L, Zheng G S, Deng D X, et al. Experimental study of heat transfer performance of porous wall microchannels[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4625-4634. | |
| 17 | 周正龙, 舒碧芬, 江景祥, 等. 疏水表面改性对微通道换热和压降性能的影响[J]. 应用能源技术, 2019(7): 1-3. |
| Zhou Z L, Shu B F, Jiang J X, et al. Effects of hydrophobic surface on heat transfer and pressure drop in microchannel[J]. Applied Energy Technology, 2019(7): 1-3. | |
| 18 | Chang W, Luo K, Li W M, et al. Enhanced flow boiling of HFE-7100 in silicon microchannels with nanowires coated micro-pinfins[J]. Applied Thermal Engineering, 2022, 216: 119064. |
| 19 | Tan K Y, Hu Y W, He Y R. Achieving ultra-uniform temperature distribution with a heterogeneous wettability surface for two-phase flow in microchannels[J]. International Journal of Thermal Sciences, 2023, 192: 108443. |
| 20 | 喻祖康, 舒碧芬, 黄妍, 等. 基于表面亲水改性的微通道高热流流动沸腾换热性能优化[J]. 热能动力工程, 2020, 35(12): 94-100. |
| Yu Z K, Shu B F, Huang Y, et al. Optimization of flow boiling heat transfer performance in micro-channel under high heat flux based on surface hydrophilic modification[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(12): 94-100. | |
| 21 | Harpole G M, Eninger J E. Micro-channel heat exchanger optimization[C]//1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium. Phoenix, AZ, USA: IEEE, 2002: 59-63. |
| 22 | Luo Y, Zhang J Z, Li W. A comparative numerical study on two-phase boiling fluid flow and heat transfer in the microchannel heat sink with different manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119864. |
| 23 | Yuan Y, Chen L, Zhang C D, et al. Numerical investigation and data-driven prediction of flow boiling heat transfer in manifold microchannels with slopes[J]. Applied Thermal Engineering, 2024, 246: 123025. |
| 24 | Xie W Y, Lv X C, Liu D C, et al. Numerical investigation of flow boiling in manifold microchannel-based heat exchangers[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120493. |
| 25 | Zhang J Z, An J, Lei L, et al. Numerical investigation of heat transfer and pressure drop characteristics of flow boiling in manifold microchannels with a simple multiphase model[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124197. |
| 26 | Tang W Y, Li J Y, Lu J L, et al. Thermal management of GaN HEMT devices using subcooled flow boiling in an embedded manifold microchannel heat sink[J]. Applied Thermal Engineering, 2023, 225: 120174. |
| 27 | 姜文涛, 赵锐, 程文龙. 嵌入式微通道散热器实验与数值研究[J]. 强激光与粒子束, 2023, 35(9): 230071. |
| Jiang W T, Zhao R, Cheng W L. Experimental and numerical study of embedded microchannel heat sink[J]. High Power Laser and Particle Beams, 2023, 35(9): 230071. | |
| 28 | Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. |
| 29 | Back D, Drummond K P, Sinanis M D, et al. Design, fabrication, and characterization of a compact hierarchical manifold microchannel heat sink array for two-phase cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(7): 1291-1300. |
| 30 | Drummond K P, Weibel J A, Garimella S V. Two-phase flow morphology and local wall temperatures in high-aspect-ratio manifold microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119551. |
| 31 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| 32 | Wu Z H, Xiao W, Song B. Efficient thermal management of high-power electronics via jet-enhanced HU-type manifold microchannel[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125113. |
| [1] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| [2] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
| [3] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
| [4] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
| [5] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
| [6] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
| [7] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
| [8] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
| [9] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
| [10] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
| [11] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
| [12] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
| [13] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
| [14] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
| [15] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号