[1] |
International Energy Agency. Tracking Industrial Energy Efficiency and CO2 Emissions[M]. Paris:Stedi Media, 2007:279-282.
|
[2] |
马瑞,吴玉庭,刘刚,等. 蒸汽压缩热泵蒸发器的重力无关性计算[J]. 化工学报, 2014, 65(S1):125-129. MA R, WU Y T, LIU G, et al. Calculation of vapor compression heat pump evaporator gravity-independent[J]. CIESC Journal, 2014, 65(S1):125-129.
|
[3] |
JIANG S, WANG S G, JIN X, et al. A general model for two-stage vapor compression heat pump systems[J]. Int. J. Refrig., 2015, 51:88-102.
|
[4] |
叶碧翠,陈光明,刘骏,等. 新型两级开式吸收式热泵系统性能[J]. 化工学报, 2014, 65(S2):248-255. YE B C, CHENG G M, LIU J, et al. A novel double-stage open absorption heat pump system[J]. CIESC Journal, 2014, 65(S2):248-255.
|
[5] |
GARIMELLA S, KEINATH C M, DELAHANTY J C, et al. Development and demonstration of a compact ammonia-water absorption heat pump prototype with microscale features for space conditioning applications[J]. Appl. Therm. Eng., 2016, 102:557-564.
|
[6] |
XU S Z, WANG L W, WANG R Z. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon-ammonia working pair[J]. Energ. Convers. Manage., 2016, 117:31-42.
|
[7] |
WANG J Y, WANG R Z, WANG L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Appl. Therm. Eng., 2016, 100:893-901.
|
[8] |
DAWOUD B. On the development of an innovative gas-fired heating appliance based on a zeolite-water adsorption heat pump:system description and seasonal gas utilization efficiency[J]. Appl. Therm. Eng., 2014, 72:323-330.
|
[9] |
LI X S, NARAYANAN S, MICHAELIS V K, et al. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps[J]. Micropor. Mesopor. Mat., 2015, 201:151-159.
|
[10] |
HAIJE W G, VELDHUIS J B J, SMEDING S F, et al. Solid/vapour sorption heat transformer:design and performance[J]. Appl. Therm. Eng., 2007, 27:1371-1376.
|
[11] |
LI T X, WANG R Z, WANG L W, et al. Study on the heat transfer and sorption characteristics of a consolidated composite sorbent for solar-powered thermochemical cooling systems[J]. Sol. Energy, 2009, 83:1742-1755.
|
[12] |
DAWOUD B, VEDDER U, AMER E H, et al. Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer[J]. Int. J. Heat Mass Tran., 2007, 50:2190-219.
|
[13] |
YANG F S, ZHANG Z X, WANG G X, et al. Numerical study of a metal hydride heat transformer for low-grade heat recovery simulation of a MH heat transformer[J]. Appl. Therm. Eng., 2011, 31:2749-2756.
|
[14] |
SEKHAR B S, MUTHUKUMAR P. Performance tests on a double-stage metal hydride based heat transformer[J]. Int. J. Hydrogen Energy, 2013, 38:15428-15437.
|
[15] |
WANG C, ZHANG P, WANG R Z. Performance of solid-gas reaction heat transformer system with gas valve control[J]. Chem. Eng. Sci., 2010, 65:2910-2920.
|
[16] |
OKTARIANI E, NODA A, NAKASHIMA K, et al. Potential of a direct contact adsorption heat pump system for generating steam from waste water[J]. Int. J. Energ. Res., 2012, 36:1077-1087.
|
[17] |
OKTARIANI E, TAHARA K, NAKASHIMA K, et al. Experimental investigation on the adsorption process for steam generation using a zeolite-water system[J]. J. Chem. Eng. Jpn., 2012, 45:355-362.
|
[18] |
XUE B, TAHARA K, NAKASHIMA K, et al. Numerical simulation for steam generation process in a novel zeolite-water adsorption heat pump[J]. J. Chem. Eng. Jpn., 2012, 45:408-416.
|
[19] |
XUE B, IWAMA Y, TANAKA Y, et al. Cyclic steam generation from a novel zeolite-water adsorption heat pump using low-grade waste heat[J]. Exp. Therm. Fluid Sci., 2013, 46:54-63.
|
[20] |
XUE B, MENG X R, WEI X L, et al. Dynamic study of steam generation from low-grade waste heat in a zeolite water adsorption heat pump[J]. Appl. Therm. Eng., 2015, 88:451-458.
|