化工学报 ›› 2015, Vol. 66 ›› Issue (S1): 1-9.DOI: 10.11949/j.issn.0438-1157.20141889
曹领帝1,2, 曾少娟1,2, 张香平1, 张锁江1
收稿日期:
2014-12-19
修回日期:
2014-12-27
出版日期:
2015-06-30
发布日期:
2015-06-30
通讯作者:
张锁江
基金资助:
北京市自然科学基金重点项目(2141003);国家自然科学基金重点项目(21436010)。
CAO Lingdi1,2, ZENG Shaojuan1,2, ZHANG Xiangping1, ZHANG Suojiang1
Received:
2014-12-19
Revised:
2014-12-27
Online:
2015-06-30
Published:
2015-06-30
Supported by:
supported by the Key Program of Beijing Municipal Natural Science Foundation (2141003) and the Key Program of the National Natural Science Foundation of China (21436010).
摘要:
针对近年来离子液体在吸收分离硫化氢(H2S)气体方面的研究进展, 重点论述了H2S在离子液体中的溶解度及对其他气体的选择性、H2S-离子液体体系的热力学性质及模型。对离子液体吸收H2S的机理进行了分析, 阐述了离子液体阴阳离子种类、结构以及取代基等对H2S分离性能的影响规律, 简要提出了该领域存在的研究难点和未来的发展方向。
中图分类号:
曹领帝, 曾少娟, 张香平, 张锁江. 离子液体吸收分离硫化氢进展[J]. 化工学报, 2015, 66(S1): 1-9.
CAO Lingdi, ZENG Shaojuan, ZHANG Xiangping, ZHANG Suojiang. Progress on hydrogen sulfide removal using ionic liquids[J]. CIESC Journal, 2015, 66(S1): 1-9.
[1] | Zhang J Z, Yi H H, Ning P, Hao J M. Advances of the study on absorption technology of hydrogen sulfide [J]. Techniques and Equipment for Environmental Pollution Control, 2002, 3(6): 47-52. |
[2] | Xie Wei(谢巍), Chang Liping(常丽萍), Yu Jianglong(余江龙), Xie Kechang (谢克昌). Research progress of removal of H2S from coal gas by dry method [J]. Journal of Chemical Industry and Engineering (China)(化工学报), 2006, 57(9): 2012-2020. |
[3] | Bates E D, Mayton R D, Ntai I, Davis J H. CO2 capture by a task-specific ionic liquid [J]. J. Am. Chem. Soc., 2002, 124(6): 926-927. |
[4] | Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquids and CO2 [J]. Nature, 1999, 399(6731): 28-29. |
[5] | Ghobadi A F, Taghikhani V, Elliott J R. Investigation on the solubility of SO2 and CO2 in imidazolium-based ionic liquids using NPT Monte Carlo simulation [J]. J. Phys. Chem. B, 2011, 115(46): 13599-607. |
[6] | Huang K, Cai D N, Chen Y L, Wu Y T, Hu X B, Zhang Z B. Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption [J]. AIChE J., 2013, 59(6): 2227-2235. |
[7] | Carvalho P J, Coutinho J A P. Non-ideality of solutions of NH3, SO2, and H2S in ionic liquids and the prediction of their solubilities using the Flory-Huggins model [J]. Energy Fuels, 2010, 24: 6662-6666. |
[8] | Zhang Y Q, Zhang S J, Lu X M, Zhou Q, Fan W, Zhang X P. Dual amino-functionalised phosphonium ionic liquids for CO2 capture [J]. Chem. Eur. J., 2009, 15: 3003-3011 . |
[9] | Rogers R D, Seddon K R. Ionic liquids — solvents of the future [J]. Science, 2003, 302(5646): 792-793. |
[10] | Welton T. Room-temperature ionic liquids— solvents for synthesis and catalysis [J]. Chem. Rev., 1999, 99(8): 2071-2083. |
[11] | He H, Zheng Y, Chen H, Zhang X, Yao X, Zhang S. Computational studies of the structure and cation-anion interactions in 1-ethyl-3-methylimidazolium lactate ionic liquid [J]. Science China-Chemistry, 2012, 55(8): 1548-1556. |
[12] | Zhang X P, Zhang X C, Dong H F, Zhao Z J, Zhang S J, Huang Y. Ionic liquids for CO2 capture—development and progress [J]. Energy Environ. Sci., 2012, 5: 6668-6681. |
[13] | Jalili A H, Shokouhi M, Maurer G, Hosseini-Jenab M. Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [J]. J. Chem. Thermodyn., 2013, 67: 55-62. |
[14] | Gutowski K E, Maginn E J. Amine-functionalized task-specificionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation [J]. J. Am. Chem. Soc., 2008, 130(44): 14690-14704. |
[15] | Zhang J Z, Jia C, Dong H F, Wang J Q, Zhang X P, Zhang S J. A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture [J]. Ind. Eng. Chem. Res., 2013, 52(17): 5835-5841. |
[16] | Yang Z Z, Zhao Y N, He L N. CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion [J]. RSC Advances, 2011, 1(4): 545-567. |
[17] | Liu A H, Ma R, Song C, Yang Z Z, Yu A, Cai Y, He L N, Zhao Y N, Yu B, Song Q W. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion [J]. Angew. Chem. Int. Ed., 2012, 51(45): 11306-11310. |
[18] | Wang C M, Luo H M, Jiang D E, Li H R, Dai S. Carbon dioxide capture by superbase-derived protic ionic liquids [J]. Angew. Chem. Int. Ed., 2010, 49(34): 5978-5981. |
[19] | Liu X M, Zhou G H, Zhang S J, Yao X Q. Molecular dynamics simulation of dual amino-functionalized imidazolium-based ionic liquids [J]. Fluid Phase Equilib., 2009, 284(1): 44-49. |
[20] | Ren S H, Hou Y C, Tian S D, Chen X M, Wu W Z. What are functional ionic liquids for the absorption of acidic gases? [J]. J. Phys. Chem. B, 2013, 117(8): 2482-2486. |
[21] | Ramdin M, de Loos T W, Vlugt T J H. State-of-the-art of CO2 capture with ionic liquids [J]. Ind. Eng. Chem. Res., 2012, 51: 8149-8177. |
[22] | Privalova E I, Maki-Arvela P, Murzin D Y, Mikkola J P. Capturing CO2: conventional versus ionic-liquid based technologies [J]. Russ. Chem. Rev., 2012, 81(5): 435-457. |
[23] | Wang C M, Luo X Y, Zhu X, Cui G K, Jiang D E, Deng D S, Li H R, Dai S. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids [J]. RSC Advances, 2013, 3(36): 15518-15527. |
[24] | Huang J J, Ruether T. Why are ionic liquids attractive for CO2 absorption? An overview [J]. Aust. J. Chem., 2009, 62(4): 298-308. |
[25] | Karadas F, Atilhan M, Aparicio S. Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening [J]. Energy Fuels, 2010, 24: 5817-5828. |
[26] | Yuan Xiaoliang(袁晓亮), Zhang Yanqiang(张延强), Lan Ling(兰玲), Zhang Suojiang(张锁江). Research progress in fixation and transformation of CO2 using ionic liquids [J]. The Chinese Journal of Process Engineering(过程工程学报), 2008, 8(2): 409-416. |
[27] | Li Cuina(李翠娜), He Gaohong(贺高红), Li Xiangcun(李祥村), Li Hao(李皓), Zhao Wei(赵薇). Progress of functionalized ionic liquids for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress(化工进展), 2011, 30(4): 709-714. |
[28] | Jou F Y, Mather A E. Solubility of hydrogen sulfide in bmim PF6 [J]. International Journal of Thermophysics, 2007, 28(2): 490-495. |
[29] | Rahmati-Rostami M, Ghotbi C, Hosseini-Jenab M, Ahmadi A N, Jalili A H. Solubility of H2S in ionic liquids [hmim][PF6], [hmim][BF4], and [hmim][Tf2N] [J]. J. Chem. Thermodyn., 2009, 41(9): 1052-1055. |
[30] | Shokouhi M, Adibi M, Jalili A H, Hosseini-Jenab M, Mehdizadeh A. Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate [J]. J. Chem. Eng. Data, 2010, 55(4): 1663-1668. |
[31] | Sakhaeinia H, Jalili A H, Taghikhani V, Safekordia A A. Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]) [J]. J. Chem. Eng. Data, 2010, 55(12): 5839-5845. |
[32] | Sakhaeinia H, Taghikhani V, Jalili A H, Mehdizadeh A, Safekordi A A. Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions [J]. Fluid Phase Equilib., 2010, 298(2): 303-309. |
[33] | Jalili A H, Mehdizadeh A, Shokouhi M, Ahmadi A N, Hosseini-Jenab M, Fateminassab F. Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate [J]. J. Chem. Thermodyn., 2010, 42(10): 1298-1303. |
[34] | Jalili A H, Safavi M, Ghotbi C, Mehdizadeh A, Hosseini-Jenab M, Taghikhani V. Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide [J]. J. Phys. Chem. B, 2012, 116(9): 2758-2774. |
[35] | Safavi M, Ghotbi C, Taghikhani V, Jalili A H, Mehdizadeh A. Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: experimental and modelling [J]. J. Chem. Thermodyn., 2013, 65: 220-232. |
[36] | Pomelli C S, Chiappe C, Vidis A, Laurenczy G, Dyson P J. Influence of the interaction between hydrogen sulfide and ionic liquids on solubility: experimental and theoretical investigation [J]. J. Phys. Chem. B, 2007, 111(45): 13014-13019. |
[37] | Shiflett M B, Niehaus A M S, Yokozeki A. Separation of CO2 and H2S using room-temperature ionic liquid bmim MeSO4 [J]. J. Chem. Eng. Data, 2010, 55(11): 4785-4793. |
[38] | Shiflett M B, Yokozeki A. Separation of CO2 and H2S using room-temperature ionic liquid bmim PF6 [J]. Fluid Phase Equilib., 2010, 294: 105-113. |
[39] | Guo B, Duan E H, Zhong Y F, Gao L, Zhang X S, Zhao D S. Absorption and oxidation of H2S in caprolactam tetrabutyl ammonium bromide ionic liquid [J]. Energy Fuels, 2011, 25: 159-161. |
[40] | Ma Yunqian (马云倩), Wang Rui (王睿). H2S absorption capacity and regeneration performance of amine Fe-based ionic liquid [J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2014, 35(4): 760-765. |
[41] | Ma Yunqian(马云倩), Wang Rui (王睿). H2S absorption capacity of ionic liquid-MDEA-H2O combined desulfurizers [J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2014, 35(7): 1515-1522. |
[42] | Huang K, Cai D N, Chen Y L, Wu Y T, Hu X B, Zhang Z B. Dual Lewis base functionalization of ionic liquids for highly efficient and selective capture of H2S [J]. Chempluschem, 2014, 79(2): 241-249. |
[43] | Jalili A H, Rahmati-Rostami M, Ghotbi C, Hosseini-Jenab M, Ahmadi A N. Solubility of H2S in ionic liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N] [J]. J. Chem. Eng. Data , 2009, 54: 1844-1849. |
[44] | Ren W, Sensenich B, Scurto A M. High-pressure phase equilibria of {carbon dioxide (CO2) + n-alkyl-imidazolium bis(trifluoromethylsulfonyl)amide} ionic liquids [J]. J. Chem. Thermodyn., 2010, 42(3): 305-311. |
[45] | Ghotbi C, Sedghkerdar M H, Taghikhani V, Rostami M R, Behzadi B. Application of UNIFAC and SAFT based models in correlating the solubility of acid gas in ionic liquids// Baby S, Sandhu P S, Dan Y. Proceedings of 2010 International Conference on Chemical Engineering and Applications[C]. 2010: 145-151. |
[46] | Ahmadi M A, Haghbakhsh R, Soleimani R, Bajestani M B. Estimation of H2S solubility in ionic liquids using a rigorous method [J]. Journal of Supercritical Fluids, 2014, 92: 60-69. |
[47] | Aparicio S, Atilhan M. Computational study of hexamethylguanidinium lactate ionic liquid: a candidate for natural gas sweetening [J]. Energy & Fuels, 2010, 24: 4989-5001. |
[48] | Lee S H, Kim B S, Lee E W, Park Y I, Lee J M. The removal of acid gases from crude natural gas by using novel supported liquid membranes [J]. Desalination, 2006, 200(1/2/3): 21-22. |
[49] | Heintz Y J, Sehabiague L, Morsi B I, Jones K L, Luebke D R, Pennline H W. Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent [J]. Energy & Fuels, 2009, 23: 4822-4830. |
[50] | Carvalho P J, Coutinho J A P. The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities [J]. Energy & Environmental Science, 2011, 4(11): 4614-4619. |
[51] | Mortazavi-Manesh S, Satyro M A, Marriott R A. Screening ionic liquids as candidates for separation of acid gases: solubility of hydrogen sulfide, methane, and ethane [J]. AIChE Journal, 2013, 59(8): 2993-3005. |
[52] | Handy H, Santoso A, Widodo A, Palgunadi J, Soerawidjaja T H, Indarto A. H2S-CO2 separation using room temperature ionic liquid [BMIM][Br] [J]. Separation Science and Technology, 2014, 49(13): 2079-2084. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[10] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[11] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[12] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[13] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[14] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||