化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1779-1787.DOI: 10.11949/j.issn.0438-1157.20181440
收稿日期:
2018-12-05
修回日期:
2019-02-22
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
郭鹏程
作者简介:
<named-content content-type="corresp-name">颜建国</named-content>(1987—),男,博士,讲师,<email>jgyan@ xaut.edu.cn</email>|郭鹏程(1975—),男,博士,教授,<email>guoyicheng@xaut.edu.cn</email>
基金资助:
Jianguo YAN(),Fengling ZHU,Pengcheng GUO(),Xingqi LUO
Received:
2018-12-05
Revised:
2019-02-22
Online:
2019-05-05
Published:
2019-05-05
Contact:
Pengcheng GUO
摘要:
为获取高热流、低流速条件下超临界CO2的传热规律,开展了超临界CO2在内径2 mm水平小圆管内对流传热试验研究,并重点探讨了变物性、浮升力和热加速等效应对传热过程的影响。试验参数范围:系统压力7.6~8.4 MPa,质量流速400~500 kg/(m2?s),热通量0~200 kW/m2,流体温度20~60℃,Reynolds数1.2×104~4.3×104。分别采用Gr/Re 2和Kv作为浮升力效应和热加速效应的判别因子。结果显示,在高热流低流速工况下,浮升力效应显著(Gr/Re 2 > 10-3),同一个截面处的上壁面传热系数始终小于下壁面传热系数。浮升力效应是高热流低流速工况下传热恶化的主要诱发因素。试验中热加速因子较小(Kv < 8.5×10-7),其效应可以忽略。将试验数据与典型的传热经验关联式作对比,结果表明Liao-Zhao关联式的计算结果与试验结果最吻合。
中图分类号:
颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
Jianguo YAN, Fengling ZHU, Pengcheng GUO, Xingqi LUO. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787.
参数 | 不确定度/% |
---|---|
压力/ MPa | 0.2 |
质量流速/(kg/(m2?s)) | 0.8 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
热通量/( kW/m2) | 4.6 |
传热系数/(W/(m2?K)) | 6.6 |
表1 参数的不确定度
Table 1 Uncertainties of experimental parameters
参数 | 不确定度/% |
---|---|
压力/ MPa | 0.2 |
质量流速/(kg/(m2?s)) | 0.8 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
热通量/( kW/m2) | 4.6 |
传热系数/(W/(m2?K)) | 6.6 |
序号 | p/MPa | G/(kg/(m2?s)) |
---|---|---|
1 | 7.6 | 400 |
2 | 8.0 | 400 |
3 | 8.4 | 400 |
4 | 8.4 | 450 |
5 | 8.4 | 500 |
表2 工况
Table 2 Test conditions
序号 | p/MPa | G/(kg/(m2?s)) |
---|---|---|
1 | 7.6 | 400 |
2 | 8.0 | 400 |
3 | 8.4 | 400 |
4 | 8.4 | 450 |
5 | 8.4 | 500 |
名称 | 关联式 |
---|---|
Dittus-Boelter | |
Gnielinski | |
Liao-Zhao[ | |
Jackson[ | |
Pitla et al.[ | |
Li et al.[ | |
Krasnoshchekov et al.[ | |
表3 传热经验关联式
Table 3 Heat transfer empirical correlation
名称 | 关联式 |
---|---|
Dittus-Boelter | |
Gnielinski | |
Liao-Zhao[ | |
Jackson[ | |
Pitla et al.[ | |
Li et al.[ | |
Krasnoshchekov et al.[ | |
1 | 赵新宝, 鲁金涛, 袁勇, 等 . 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报, 2016, 36(1): 154-162. |
Zhao X B , Lu J T , Yuan Y , et al . Analysis of supercritical carbon dioxide Brayton cycle and candidate materials of key hot components for power plants [J]. Proceedings of the CSEE, 2016, 36(1): 154-162. | |
2 | Ahn Y , Bae S J , Kim M , et al . Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
3 | Cabeza L F , de Gracia A , Fernández A I , et al . Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
4 | Rao N T , Oumer A N , Jamaludin U K . State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels[J]. The Journal of Supercritical Fluids, 2016, 116: 132-147. |
5 | Liao S M , Zhao T S . Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124(3): 413-420. |
6 | Duffey R B , Pioro I L . Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
7 | 石润富, 姜培学, 张宇 . 细圆管内超临界二氧化碳对流换热的实验研究[J]. 工程热物理学报, 2007, 28(6): 995-997. |
Shi R F , Jiang P X , Zhang Y . Experimental study on convection heat transfer of supercritical carbon dioxide in a thin tube [J]. Journal of Engineering Thermophysics, 2007, 28(6): 995-997. | |
8 | Jiang P X , Liu B , Zhao C R , et al . Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 741-749. |
9 | Jiang P X , Zhang Y , Shi R F . Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3052-3056. |
10 | 张宇, 姜培学, 石润富, 等 . 竖直圆管中超临界压力CO2在低Re数下对流换热研究[J]. 工程热物理学报, 2008, 29(1): 118-120. |
Zhang Y , Jiang P X , Shi R F , et al . Study on convection heat transfer of supercritical pressure CO2 in vertical circular tube at low Re number [J]. Journal of Engineering Thermophysics, 2008, 29(1): 118-120. | |
11 | 杨传勇, 徐进良, 王晓东, 等 . 超临界二氧化碳水平管内层流混合对流换热数值模拟[J]. 低温工程, 2012, (4): 24-29. |
Yang C Y , Xu J L , Wang X D , et al . Numerical simulation of laminar convective heat transfer in a supercritical carbon dioxide horizontal pipe[J]. Cryogenic Engineering, 2012, (4): 24-29. | |
12 | 刘生晖, 黄彦平, 刘光旭, 等 . 管内超临界二氧化碳强迫对流传热浮升力效应数值研究[J]. 核动力工程, 2016, 37(6): 18-22. |
Liu S H , Huang Y P , Liu G X , et al . Numerical study on the effect of supercritical carbon dioxide forcing on the spread of heat floating lift effect [J]. Nuclear Power Engineering, 2016,37(6): 18-22. | |
13 | 黄彦平, 刘生晖, 刘光旭, 等 . 典型超临界二氧化碳强迫对流传热关联式评价分析[J]. 核动力工程, 2016, (1): 28-33. |
Huang Y P , Liu S H , Liu G X , et al . Evaluation and analysis of forced convection heat transfer correlations for supercritical carbon dioxide in tubes[J]. Nuclear Power Engineering, 2016, (1): 28-33. | |
14 | 相梦如, 郭江峰, 淮秀兰, 等 . 超临界压力CO2水平管内冷却换热机理研究[J]. 工程热物理学报, 2017, 38(9): 1929-1934. |
Xiang M R , Guo J F , Huai X L , et al . Study on the cooling and heat transfer mechanism of CO2 in horizontal tube at supercritical pressure [J]. Journal of Engineering Thermophysics, 2017,38(9): 1929-1934. | |
15 | 白万金, 徐肖肖, 吴杨杨 . 低质量流速下超临界CO2在管内冷却换热特性[J]. 化工学报, 2016, 67(4): 1244-1250. |
Bai W J , Xu X X , Wu Y Y . Heat transfer characteristics of supercritical CO2 at low mass flux in tube [J]. CIESC Journal, 2016, 67(4): 1244-1250. | |
16 | Lei Y , Chen Z . Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels[J]. International Journal of Refrigeration, 2018, 90: 46-57. |
17 | Xu X , Zhang Y , Liu C , et al . Experimental investigation of heat transfer of supercritical CO2 cooled in helically coiled tubes based on exergy analysis[J]. International Journal of Refrigeration, 2018, 89: 177-185. |
18 | 刘新新, 叶建, 徐肖肖, 等 . 超临界CO2在水平螺旋管内的冷却换热特性[J]. 化工学报, 2016, 67(S2): 120-127. |
Liu X X , Ye J , Xu X X , et al . Heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube [J]. CIESC Journal, 2016, 67(S2): 120-127. | |
19 | Yang Z , Chen W , Chyu M K . Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes[J]. Applied Thermal Engineering, 2018, 145: 705-715. |
20 | Coleman H W , Steele W G . Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 1888-1896. |
21 | Thom J S , Walker W M , Fallon T A , et al . Boiling in subcooled water during flow up heated tubes or annuli[J]. Proceedings of the Institution of Mechanical Engineers, 1966, 180: 226-246. |
22 | Yamagata K , Nishikawa K , Hasegawa S , et al . Forced convective heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2575-2593. |
23 | Kim J K , Hong K J , Lee J S . Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes[J]. Nuclear Engineering and Design, 2007, 237(15): 1795-1802. |
24 | Jackson J D . Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
25 | McEligot D M , Coon C W , Perkins H C . Relaminarization in tubes[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 431-433. |
26 | Liao S M , Zhao T S . An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034. |
27 | Jackson J D . Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264(11): 24-40. |
28 | Pitla S S , Groll E A , Ramadhyani S . New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2 [J]. International Journal of Refrigeration, 2002, 25(7): 887-895. |
29 | Li H , Kruizenga A , Anderson M , et al . Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. |
30 | Krasnoshchekov E , Kuraeva I , Protopopov V . Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions[J]. Teplofizika Vysokikh Temperatur, 1970, 7(5): 922-930. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[5] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[8] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[9] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||