化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3654-3664.DOI: 10.11949/0438-1157.20230634
宋明昊1(), 赵霏1, 刘淑晴1, 李国选1, 杨声2, 雷志刚1,3()
收稿日期:
2023-06-27
修回日期:
2023-09-01
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
雷志刚
作者简介:
宋明昊(1999—),男,硕士研究生, 2021210020@mail.buct.edu.cn
基金资助:
Minghao SONG1(), Fei ZHAO1, Shuqing LIU1, Guoxuan LI1, Sheng YANG2, Zhigang LEI1,3()
Received:
2023-06-27
Revised:
2023-09-01
Online:
2023-09-25
Published:
2023-11-20
Contact:
Zhigang LEI
摘要:
对离子液体萃取模拟油中的苯酚和苯甲酚进行了多尺度模拟,基于COSMO-RS模型筛选了萃取效果良好的离子液体,并计算了离子液体和挥发酚的σ-profile以及混合物的超额焓用以探究体系极性与非理想性。通过量子化学计算与分子动力学模拟计算了挥发酚和离子液体的静电势、弱相互作用,以及径向分布函数和空间分布函数等参数,旨在了解离子液体与挥发酚之间的相互作用机理。设计了离子液体萃取脱除模拟油中挥发酚工艺流程,结合灵敏度分析进一步优化了工艺条件,计算结果证实了使用离子液体脱除挥发酚的可行性与先进性。
中图分类号:
宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664.
Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids[J]. CIESC Journal, 2023, 74(9): 3654-3664.
图3 离子液体和苯酚、邻苯甲酚、间苯甲酚和对苯甲酚在不同摩尔分数下的超额焓
Fig.3 The excess enthalpy of the mixtures comprising ionic liquids and phenol, ortho-benzyl phenol, meta-benzyl phenol, and para-benzyl phenol evaluated at various molar fraction
图4 [EMIM]+、[BF4]-、苯酚、三种苯甲酚和环己烷的ESP分析与极值点(单位:kcal/mol, 1 cal=4.1868 J)
Fig.4 The analysis involves the ESP and the corresponding extrema of [EMIM]+, [BF4]-, phenol, the three isomers of benzyl phenol and cyclohexane
图6 [BF4]-和[EMIM]+为参考中心对苯酚、对苯甲酚、环己烷和水的径向分布函数
Fig.6 The radial distribution functions of [BF4]- and [EMIM]+ as reference centers and that respect to phenol, benzyl phenol, cyclohexane and water
图7 以苯酚、对苯甲酚、水为参考分子对[EMIM]+ (红)和[BF4]- (蓝) 的空间分布函数
Fig.7 The spatial distribution functions of [EMIM]+ (red) and [BF4]- (blue) for phenol, benzyl phenol, and water as reference molecules
1 | 王春勇, 商井远, 王星, 等. 我国北方某企业地下水苯酚污染评估[J]. 江西化工, 2021, 37(5): 1-3. |
Wang C Y, Shang J Y, Wang X, et al. Assessment of phenol pollution in groundwater of an enterprise in northern China[J]. Jiangxi Chemical Industry, 2021, 37(5): 1-3. | |
2 | 傅金祥, 王锋, 由昆, 等. 粉末活性炭吸附工艺应急处理苯酚污染[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(4): 633-636. |
Fu J X, Wang F, You K, et al. Trial study of emergency treatment for phenol pollution water by using PAC adsorption[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(4): 633-636. | |
3 | 窦建芝, 刘金芝, 王慧, 等. 花生壳活性炭吸附苯酚及对硝基苯酚[J]. 常熟理工学院学报, 2011, 25(2): 47-51. |
Dou J Z, Liu J Z, Wang H, et al. Adsorption of phenol and 4-nitrophenol on activated carbon derived from peanut hull[J]. Journal of Changshu Institute of Technology, 2011, 25(2): 47-51. | |
4 | 斯琴高娃, 乌云, 田艳飞. 浅析苯酚对环境的污染[J]. 内蒙古石油化工, 2006, 32(12): 50-51. |
Siqin G W, Wu Y, Tian Y F. Analysis of environmental pollution caused by phenol[J]. Inner Mongolia Petrochemical Industry, 2006, 32(12): 50-51. | |
5 | 马紫珺, 马宏瑞, 朱超, 等. 改性市政污泥对水中苯酚的吸附性能研究[J]. 化学工业与工程, 2023, 40(2): 85-93. |
Ma Z J, Ma H R, Zhu C, et al. Municipal sludge modification and their adsorption performance for phenol in wastewater[J]. Chemical Industry and Engineering, 2023, 40(2): 85-93. | |
6 | 付佳, 谌伦建, 徐冰, 等. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
Fu J, Chen L J, Xu B, et al. Microbial degradation of phenol in simulated coal gasification wastewater[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537. | |
7 | Mohamad Said K A, Ismail A F, Abdul Karim Z, et al. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater[J]. Process Safety and Environmental Protection, 2021, 151: 257-289. |
8 | Mohammadi S, Kargari A, Sanaeepur H, et al. Phenol removal from industrial wastewaters: a short review[J]. Desalination and Water Treatment, 2015, 53(8): 2215-2234. |
9 | Ahmed S, Rasul M G, Martens W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments[J]. Desalination, 2010, 261(1/2): 3-18. |
10 | Cordova Villegas L G, Mashhadi N, Chen M, et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3): 157-167. |
11 | Alshabib M, Onaizi S A. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges[J]. Separation and Purification Technology, 2019, 219: 186-207. |
12 | Othmani A, Magdouli S, Senthil Kumar P, et al. Agricultural waste materials for adsorptive removal of phenols, chromium (Ⅵ) and cadmium (Ⅱ) from wastewater: a review[J]. Environmental Research, 2022, 204: 111916. |
13 | Forsyth S A, Pringle J M, MacFarlane D R. Ionic liquids—an overview[J]. Australian Journal of Chemistry, 2004, 57(2): 113-119. |
14 | Holbrey J D, Seddon K R. Ionic liquids[J]. Clean Products and Processes, 1999, 1(4): 223-236. |
15 | 杨灿, 孙雪琦, 尚明华, 等. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
Yang C, Sun X Q, Shang M H, et al. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems[J]. CIESC Journal, 2023, 74(4): 1419-1432. | |
16 | Song Z, Zhang C Y, Qi Z W, et al. Computer-aided design of ionic liquids as solvents for extractive desulfurization[J]. AIChE Journal, 2018, 64(3): 1013-1025. |
17 | Gui C M, Li G X, Zhu R S, et al. Ionic liquids for capturing 1,2-dimethoxyethane (DMET) in VOCs: experiment and mechanism exploration[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2257-2267. |
18 | Li G X, Gao Q H, Liu Q H, et al. Extraction of polycyclic aromatic hydrocarbons from fluid catalytic cracking diesel with ionic liquids[J]. AIChE Journal, 2023, 69(2): e17914. |
19 | 高腾飞, 李国选, 雷志刚. 从催化裂化柴油中分离联苯的溶剂筛选: 实验和计算热力学[J]. 化工学报, 2022, 73(12): 5314-5323. |
Gao T F, Li G X, Lei Z G. Solvent selection for separation of biphenyl from FCC diesel oil: experimental and computational thermodynamics[J]. CIESC Journal, 2022, 73(12): 5314-5323. | |
20 | Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
21 | Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena[J]. The Journal of Physical Chemistry, 1995, 99(7): 2224-2235. |
22 | Klamt A, Jonas V, Bürger T, et al. Refinement and parametrization of COSMO-RS[J]. The Journal of Physical Chemistry A, 1998, 102(26): 5074-5085. |
23 | Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach[J]. AIChE Journal, 2002, 48(2): 369-385. |
24 | Lu T A, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
25 | Zhang J, Lu T. Efficient evaluation of electrostatic potential with computerized optimized code[J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20323-20328. |
26 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
27 | Stewart J J P. MOPAC: a semiempirical molecular orbital program[J]. Journal of Computer-Aided Molecular Design, 1990, 4(1): 1-103. |
28 | Lefebvre C, Rubez G, Khartabil H, et al. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density[J]. Physical Chemistry Chemical Physics, 2017, 19(27): 17928-17936. |
29 | Lu T, Chen Q X. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems[J]. Journal of Computational Chemistry, 2022, 43(8): 539-555. |
30 | van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. |
31 | Martínez L, Andrade R, Birgin E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. |
32 | Kirkwood J G, Boggs E M. The radial distribution function in liquids[J]. The Journal of Chemical Physics, 1942, 10(6): 394-402. |
33 | Svishchev I M, Kusalik P G. Structure in liquid water: a study of spatial distribution functions[J]. The Journal of Chemical Physics, 1993, 99(4): 3049-3058. |
34 | Brehm M, Thomas M, Gehrke S, et al. TRAVIS—a free analyzer for trajectories from molecular simulation[J]. The Journal of Chemical Physics, 2020, 152(16): 164105. |
35 | Brehm M, Kirchner B. TRAVIS—a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories[J]. Journal of Chemical Information and Modeling, 2011, 51(8): 2007-2023. |
36 | Wang S, Sandler S I, Chen C C. Refinement of COSMO-SAC and the applications[J]. Industrial & Engineering Chemistry Research, 2007, 46(22): 7275-7288. |
37 | Bell I H, Mickoleit E, Hsieh C M, et al. A benchmark open-source implementation of COSMO-SAC[J]. Journal of Chemical Theory and Computation, 2020, 16(4): 2635-2646. |
38 | Xiong R C, Sandler S I, Burnett R I. An improvement to COSMO-SAC for predicting thermodynamic properties[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8265-8278. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[4] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[5] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[9] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[10] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[11] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[12] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||