1 |
Jin L M, Guo, X, Gong R Q, et al. Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes[J]. Chemelectrochem, 2019, 6: 3020-3029.
|
2 |
Jin L M, Zheng J S, Wu Q, et al. Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg[J]. Materials Today Energy, 2018, 7: 51-57.
|
3 |
Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium[J]. Chemical Reviews, 2018, 118(14): 6457-6498.
|
4 |
Zheng J S, Zhang L, Shellikeri A, et al. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage[J]. Scientific Reports, 2017, 7: 41910.
|
5 |
Li B, Zheng J S, Zhang H Y, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advancd Materials, 2018, 30(17): 1705670.
|
6 |
Jin L M, Gong R Q, Zhang W C, et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors: a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode[J]. Journal of Materials Chemistry A, 2019, 7: 8234-8244.
|
7 |
Dou X, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104.
|
8 |
Arnaiz M, Nair V, Mitra S, et al. Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors[J]. Electrochimica Acta, 2019, 304: 437-446.
|
9 |
Cao W, Zheng J S, Adams D, et al. Comparative study of the power and cycling performance for advanced lithium-ion capacitors with various carbon anodes[J]. Journal of the Electrochemical Society, 2014, 161(14): A2087- A2092.
|
10 |
Zhou Q F, Gong Y, Tao K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochimica Acta, 2019, 320: 134582.
|
11 |
Zhu Y D, Huang Y, Chen C, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochimica Acta, 2019, 321: 134698.
|
12 |
Wu X L, Ding B, Zhang C G, et al. Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities[J]. Carbon, 2019, 153: 225-233.
|
13 |
Chen M, Wang W, Liang X, et al. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): 1800171.
|
14 |
Chen J T, Yang B J, Hou H J, et al. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor[J]. Advanced Energy Materials, 2019, 9(19): 1803894.
|
15 |
Fu R S, Chang Z Z, Shen C X, et al. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage[J]. Electrochimica Acta, 2018, 260: 430-438.
|
16 |
Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015, 5(11): 1402034.
|
17 |
Jin L M, Guo X, Shen C, et al. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor[J]. Journal of Power Sources, 2019, 441: 227211.
|
18 |
Shellikeri A, Watson V, Adams D, et al. Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures[J]. Journal of the Electrochemical Society, 2017, 164(14): A3914- A3924.
|
19 |
Guo X, Gong R, Qin N, et al. The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 845: 84-91.
|
20 |
Odziomek M, Chaput F, Rutkowska A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nature Communications, 2017, 8: 15636.
|
21 |
Shellikeri A, Yturriaga S, Zheng J S, et al. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode-long term cycle life study, rate effect and charge sharing analysis[J]. Journal of Power Sources, 2018, 392: 285-295.
|
22 |
Sun N, Guan Z, Liu Y, et al. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351.
|
23 |
Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J]. Materials Characterization, 2013, 85: 111-123.
|
24 |
Dysart A D, Phuah X L, Shrestha L K, et al. Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic[J]. Carbon, 2018, 134: 334-344.
|
25 |
Fujimoto H, Tokumitsu K, Mabuchi A, et al. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors[J]. Journal of Power Sources, 2010, 195(21): 7452-7456.
|
26 |
Yin L, Feng J L, Zhang X H, et al. Advanced sodium-ion pseudocapacitor performance of oxygen-implanted hard carbon derived from carbon spheres[J]. Journal of Materials Science, 2019, 54(5): 4124-4134.
|
27 |
Haj Y A, Balamurugan J, Kim N H, et al. Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(8): 3941-3952.
|
28 |
Fang Q, Zhou X, Deng W, et al. Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants[J]. Small, 2017, 13(14): 1603779.
|
29 |
Sheng L Z, Jiang L L, Wei T, et al. Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities[J]. Advanced Energy Materials, 2017, 7(19): 1700668.
|
30 |
Li D, Shi J, Liu H L, et al. T-Nb2O5 embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors[J]. Sustainable Energy & Fuels, 2019, 3(4): 1055-1065.
|
31 |
Yang C Y, Sun M Q, Zhang L, et al. ZnFe2O4@carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14713-14721.
|
32 |
Huang S J, Yang L W, Gao M, et al. Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors[J]. Journal of Power Sources, 2019, 437: 226934.
|
33 |
Kim H S, Cook J B, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nature Materials, 2017, 16(4): 454-460.
|
34 |
Come J, Taberna P L, Hamelet S, et al. Electrochemical kinetic study of LiFePO4 using cavity microelectrode[J]. Journal of the Electrochemical Society, 2011, 158(10): A1090- A1093.
|
35 |
Chao D, Zhu C, Yang P, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nature Communications, 2016, 7(1): 1-8.
|
36 |
Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials, 2019, 23: 409-417.
|