化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2735-2742.DOI: 10.11949/0438-1157.20200071
王赫1(),秦楠2,3,郭鑫2,3,郑俊生2,3(),赵基钢1()
收稿日期:
2020-01-17
修回日期:
2020-04-08
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
郑俊生,赵基钢
作者简介:
王赫(1993—),男,硕士研究生,基金资助:
He WANG1(),Nan QIN2,3,Xin GUO2,3,Junsheng ZHENG2,3(),Jigang ZHAO1()
Received:
2020-01-17
Revised:
2020-04-08
Online:
2020-06-05
Published:
2020-06-05
Contact:
Junsheng ZHENG,Jigang ZHAO
摘要:
以浓硫酸和浓硝酸为氧化剂,采用超声氧化法对硬碳进行表面氧化处理,并研究其作为锂离子超级电容器负极材料的电化学性能。采用扫描电镜、X射线衍射和X射线光电子能谱等表征手段研究了超声氧化处理对硬碳形貌、结构以及表面含氧官能团相对含量的影响。采用恒电流充放电、循环伏安法及交流阻抗法等电化学测试手段对处理前后硬碳的电化学性能进行研究。结果表明:超声氧化处理能在硬碳表面引入适量的含氧官能团,添加额外的活性中心,提高电子迁移率,进而提高硬碳材料的电化学性能。半电池测试中,在2 A·g-1的高电流密度下,氧化硬碳的比容量是未处理硬碳的2倍,具有优秀的倍率性能。以氧化硬碳负极和活性炭正极制备出锂离子电容器,能量密度为37.6 W·h·kg-1,功率密度可达9415 W·kg-1,在1.0 A·g-1电流密度下,经过4000次充放电循环后,容量保持率为99.1%,具有良好的循环稳定性。
中图分类号:
王赫, 秦楠, 郭鑫, 郑俊生, 赵基钢. 锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J]. 化工学报, 2020, 71(6): 2735-2742.
He WANG, Nan QIN, Xin GUO, Junsheng ZHENG, Jigang ZHAO. Surface modification and electrochemical properties of hard carbon anode material for lithium ion capacitors[J]. CIESC Journal, 2020, 71(6): 2735-2742.
Sample | C—C | C—O | CO | O—CO |
---|---|---|---|---|
HC | 75.9 | 12.7 | 3.8 | 7.5 |
OHC | 70.7 | 13.6 | 7.2 | 8.3 |
表1 HC和OHC不同官能团相对含量/%
Table 1 Relative content of different functional groups of HC and OHC/%
Sample | C—C | C—O | CO | O—CO |
---|---|---|---|---|
HC | 75.9 | 12.7 | 3.8 | 7.5 |
OHC | 70.7 | 13.6 | 7.2 | 8.3 |
Sample | k1/(mA·s·mV-1) | k2/(mA·s1/2·mV-1/2) | (k1/k2)/(s1/2·mV-1/2) |
---|---|---|---|
HC | 1.67 | 1.30 | 1.28 |
OHC | 1.91 | 1.15 | 1.66 |
表2 不同电极的k1和k2系数
Table 2 k1 and k2 coefficients for different electrodes
Sample | k1/(mA·s·mV-1) | k2/(mA·s1/2·mV-1/2) | (k1/k2)/(s1/2·mV-1/2) |
---|---|---|---|
HC | 1.67 | 1.30 | 1.28 |
OHC | 1.91 | 1.15 | 1.66 |
Sample | R0/Ω | RSEI/ Ω | RCT/ Ω | D(Li+)/(cm2·s-1) |
---|---|---|---|---|
HC | 4.185 | 30.88 | 61.65 | 4.45-8 |
OHC | 4.939 | 26.06 | 17.77 | 6.36-8 |
表3 HC和OHC的EIS拟合参数
Table 3 Fitting EIS parameters of HC and OHC
Sample | R0/Ω | RSEI/ Ω | RCT/ Ω | D(Li+)/(cm2·s-1) |
---|---|---|---|---|
HC | 4.185 | 30.88 | 61.65 | 4.45-8 |
OHC | 4.939 | 26.06 | 17.77 | 6.36-8 |
1 | Jin L M, Guo, X, Gong R Q, et al. Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes[J]. Chemelectrochem, 2019, 6: 3020-3029. |
2 | Jin L M, Zheng J S, Wu Q, et al. Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg[J]. Materials Today Energy, 2018, 7: 51-57. |
3 | Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium[J]. Chemical Reviews, 2018, 118(14): 6457-6498. |
4 | Zheng J S, Zhang L, Shellikeri A, et al. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage[J]. Scientific Reports, 2017, 7: 41910. |
5 | Li B, Zheng J S, Zhang H Y, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advancd Materials, 2018, 30(17): 1705670. |
6 | Jin L M, Gong R Q, Zhang W C, et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors: a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode[J]. Journal of Materials Chemistry A, 2019, 7: 8234-8244. |
7 | Dou X, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. |
8 | Arnaiz M, Nair V, Mitra S, et al. Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors[J]. Electrochimica Acta, 2019, 304: 437-446. |
9 | Cao W, Zheng J S, Adams D, et al. Comparative study of the power and cycling performance for advanced lithium-ion capacitors with various carbon anodes[J]. Journal of the Electrochemical Society, 2014, 161(14): A2087- A2092. |
10 | Zhou Q F, Gong Y, Tao K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochimica Acta, 2019, 320: 134582. |
11 | Zhu Y D, Huang Y, Chen C, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochimica Acta, 2019, 321: 134698. |
12 | Wu X L, Ding B, Zhang C G, et al. Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities[J]. Carbon, 2019, 153: 225-233. |
13 | Chen M, Wang W, Liang X, et al. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): 1800171. |
14 | Chen J T, Yang B J, Hou H J, et al. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor[J]. Advanced Energy Materials, 2019, 9(19): 1803894. |
15 | Fu R S, Chang Z Z, Shen C X, et al. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage[J]. Electrochimica Acta, 2018, 260: 430-438. |
16 | Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015, 5(11): 1402034. |
17 | Jin L M, Guo X, Shen C, et al. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor[J]. Journal of Power Sources, 2019, 441: 227211. |
18 | Shellikeri A, Watson V, Adams D, et al. Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures[J]. Journal of the Electrochemical Society, 2017, 164(14): A3914- A3924. |
19 | Guo X, Gong R, Qin N, et al. The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 845: 84-91. |
20 | Odziomek M, Chaput F, Rutkowska A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nature Communications, 2017, 8: 15636. |
21 | Shellikeri A, Yturriaga S, Zheng J S, et al. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode-long term cycle life study, rate effect and charge sharing analysis[J]. Journal of Power Sources, 2018, 392: 285-295. |
22 | Sun N, Guan Z, Liu Y, et al. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351. |
23 | Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J]. Materials Characterization, 2013, 85: 111-123. |
24 | Dysart A D, Phuah X L, Shrestha L K, et al. Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic[J]. Carbon, 2018, 134: 334-344. |
25 | Fujimoto H, Tokumitsu K, Mabuchi A, et al. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors[J]. Journal of Power Sources, 2010, 195(21): 7452-7456. |
26 | Yin L, Feng J L, Zhang X H, et al. Advanced sodium-ion pseudocapacitor performance of oxygen-implanted hard carbon derived from carbon spheres[J]. Journal of Materials Science, 2019, 54(5): 4124-4134. |
27 | Haj Y A, Balamurugan J, Kim N H, et al. Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(8): 3941-3952. |
28 | Fang Q, Zhou X, Deng W, et al. Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants[J]. Small, 2017, 13(14): 1603779. |
29 | Sheng L Z, Jiang L L, Wei T, et al. Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities[J]. Advanced Energy Materials, 2017, 7(19): 1700668. |
30 | Li D, Shi J, Liu H L, et al. T-Nb2O5 embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors[J]. Sustainable Energy & Fuels, 2019, 3(4): 1055-1065. |
31 | Yang C Y, Sun M Q, Zhang L, et al. ZnFe2O4@carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14713-14721. |
32 | Huang S J, Yang L W, Gao M, et al. Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors[J]. Journal of Power Sources, 2019, 437: 226934. |
33 | Kim H S, Cook J B, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nature Materials, 2017, 16(4): 454-460. |
34 | Come J, Taberna P L, Hamelet S, et al. Electrochemical kinetic study of LiFePO4 using cavity microelectrode[J]. Journal of the Electrochemical Society, 2011, 158(10): A1090- A1093. |
35 | Chao D, Zhu C, Yang P, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nature Communications, 2016, 7(1): 1-8. |
36 | Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials, 2019, 23: 409-417. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[10] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[11] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[12] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[13] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[14] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[15] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 573
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 680
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||