化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4768-4774.doi: 10.11949/0438-1157.20210125

• 分离工程 • 上一篇    下一篇

多孔炭吸附剂的乙烯-乙烷选择性反转机制

温怡静1(),张博1,陈晓霏1,赵思洋1,周欣1(),黄艳1,2(),李忠1   

  1. 1.华南理工大学化学与化工学院,广东 广州 510641
    2.华宝香精股份有限公司,上海 200000
  • 收稿日期:2021-01-19 修回日期:2021-03-24 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 周欣,黄艳 E-mail:835923214@qq.com;xinzhou@scut.edu.cn;huangyan1025@gmail.com
  • 作者简介:温怡静(1998—),女,硕士研究生,835923214@qq.com
  • 基金资助:
    国家自然科学基金项目(21808066);广东省自然科学基金项目(2019A1515010753);中国石油科技创新基金项目(2020D-5007-0408)

Selectivity reversion mechanism of porous carbon for ethane-ethylene separation

Yijing WEN1(),Bo ZHANG1,Xiaofei CHEN1,Siyang ZHAO1,Xin ZHOU1(),Yan HUANG1,2(),Zhong LI1   

  1. 1.School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
    2.Huabao Flavours & Fragrances Co. , Ltd. , Shanghai 200000, China
  • Received:2021-01-19 Revised:2021-03-24 Published:2021-09-05 Online:2021-09-05
  • Contact: Xin ZHOU,Yan HUANG E-mail:835923214@qq.com;xinzhou@scut.edu.cn;huangyan1025@gmail.com

摘要:

烯烃是重要的化工原料,吸附分离技术可在温和工况下实现烯烃纯化,而吸附剂的烷烃选择性是实现高效化工分离过程的关键。基于分子模拟,提出调节孔道尺寸以控制多孔炭优先吸附乙烯或乙烷的选择性反转机制;控制活化条件,实验制备出不同孔径的多孔炭材料并验证了乙烯-乙烷选择性反转规律。结果表明,多孔炭的石墨化表面优先吸附乙烷;随着孔径尺寸的增大,可出现优先吸附乙烯的孔道区间;若孔径进一步增大,多孔炭可回归到优先吸附乙烷的石墨化表面吸附特征。选择性反转机制适用于不同形状的孔道结构。因此,可利用微孔孔道的限域作用放大多孔炭表面的烷烃选择性,并得到高性能的烷烃选择性吸附剂。

关键词: 吸附, 分离, 烷烃选择性, 多孔炭, 分子模拟

Abstract:

Alkenes are important raw materials in chemical industry. Adsorption separation technology can achieve alkene purification under mild working conditions. Adsorbent of alkane selectivity is the key to achieve effective chemical separation processes. With the help of molecular simulation, we proposed the mechanism of tuning ethane/ethylene selectivity by controlling pore size. Porous carbon adsorbents with distinct average pore size, showing ethylene and ethane selectivity, were prepared via different activation processes. The experimentally validated mechanism suggests that: (1) Graphene surface is ethane-selective; (2) Porous carbon undergoes the reversed selectivity of ethane-ethylene-ethane with the increase in its pore size. This mechanism can be applied to porous carbon of different pore shapes. Hence, effective alkane-selective adsorbent can be obtained by amplifying the alkane-selective feature within the confined micropore of the porous carbon adsorbent.

Key words: adsorption, separation, alkane-selective, porous carbon, molecular simulation

中图分类号: 

  • TQ 028.1

图1

石墨化碳层模型C510H62 (a);狭缝孔模型C510H62×2(b) ;孔径示意图(灰色球代表碳原子,白色球代表氢原子)(c)"

图2

DFT优化结构后的乙烯(a)、乙烷(b)分子模型"

表1

乙烯和乙烷的分子动力学直径和最小分子笼的尺寸"

吸附质动力学直径[31]/?最小分子笼尺寸
x/?y/?z/?
乙烯4.165.094.353.98
乙烷4.445.114.344.58

图3

碳层表面对乙烯、乙烷的放热吸附焓(a);乙烯(b)和乙烷(c)在碳层表面的吸附构型"

图4

乙烯和乙烷的放热吸附焓随孔道尺寸变化的规律(a);发生选择性反转时乙烯(b)和乙烷(c)在孔道中的吸附构型"

图5

两种多孔炭常温下的乙烯和乙烷等温线(a);平均孔径(b)"

图6

乙烯和乙烷的放热吸附焓随孔道尺寸变化的规律"

1 Lin R B, Wu H, Li L B, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(40): 12940-12946.
2 Yang L F, Cui X L, Ding Q, et al. Polycatenated molecular cage-based propane trap for propylene purification with recorded selectivity[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2525-2530.
3 Ren T, Patel M, Blok K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes[J]. Energy, 2006, 31(4): 425-451.
4 Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437.
5 陈润道, 郑芳, 郭立东, 等. 稀有气体Xe/Kr吸附分离研究进展[J]. 化工学报, 2021, 72(1): 14-26.
Chen R D, Zheng F, Guo L D, et al. Advancements in adsorption separation of Xe/Kr noble gases[J]. CIESC Journal, 2021, 72(1): 14-26.
6 陈邦林. 反转吸附选择性可助金属有机框架纯化烯烃[J]. 化学进展, 2017, 29(8): 811-813.
Chen B L. Reversing adsorption selectivity helps MOFs purifying alkenes[J]. Progress in Chemistry, 2017, 29(8): 811-813.
7 Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446.
8 刘普旭, 贺朝辉, 李立博, 等. 高稳定双金属MOF材料用于低浓度乙烷的高效分离[J]. 化工学报, 2020, 71(9): 4211-4218.
Liu P X, He C H, Li L B, et al. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation[J]. CIESC Journal, 2020, 71(9): 4211-4218.
9 Tang Y N, Wang S, Zhou X, et al. Room temperature synthesis of Cu(Qc)2 and its application for ethane capture from light hydrocarbons[J]. Chemical Engineering Science, 2020, 213: 115355.
10 Wang S, Zhang Y F, Tang Y N, et al. Propane-selective design of zirconium-based MOFs for propylene purification[J]. Chemical Engineering Science, 2020, 219: 115604.
11 Solanki V A, Borah B. In-silico identification of adsorbent for separation of ethane/ethylene mixture[J]. Journal of Molecular Modeling, 2020, 26(12): 1-16.
12 He C H, Wang Y, Chen Y, et al. Microregulation of pore channels in covalent-organic frameworks used for the selective and efficient separation of ethane[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52819-52825.
13 Ding Q, Zhang Z, Yu C, et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework[J]. Science Advances, 2020, 6(15): eaaz4322.
14 Wang X J, Wu Y, Zhou X, et al. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene[J]. Chemical Engineering Science, 2016, 155: 338-347.
15 Ma C, Wang X J, Wang X, et al. Novel glucose-based adsorbents (Glc-As) with preferential adsorption of ethane over ethylene and high capacity[J]. Chemical Engineering Science, 2017, 172: 612-621.
16 Liang W W, Wu Y, Xiao H Y, et al. Ethane-selective carbon composites CPDA@A-ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity[J]. AIChE Journal, 2018, 64(9): 3390-3399.
17 Liang W W, Xiao H Y, Lv D, et al. Novel asphalt-based carbon adsorbents with super-high adsorption capacity and excellent selectivity for separation for light hydrocarbons[J]. Separation and Purification Technology, 2018, 190: 60-67.
18 Liang W W, Liu Z W, Peng J J, et al. Enhanced CO2 adsorption and CO2/N2/CH4 selectivity of novel carbon composites CPDA@A-Cs[J]. Energy & Fuels, 2019, 33(1): 493-502.
19 Saha D, Toof B, Krishna R, et al. Separation of ethane-ethylene and propane-propylene by Ag(Ⅰ) doped and sulfurized microporous carbon[J]. Microporous and Mesoporous Materials, 2020, 299: 110099.
20 Wang X J, Wu Y, Peng J J, et al. Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4[J]. Chemical Engineering Journal, 2019, 358: 1114-1125.
21 Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035.
22 Rappe A K, Goddard W A. Charge equilibration for molecular dynamics simulations[J]. The Journal of Physical Chemistry, 1991, 95(8): 3358-3363.
23 Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.
24 Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
25 Mehio N, Dai S, Jiang D E. Quantum mechanical basis for kinetic diameters of small gaseous molecules[J]. The Journal of Physical Chemistry A, 2014, 118(6): 1150-1154.
26 Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
27 Lu T, Chen F W. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. Journal of Molecular Graphics and Modelling, 2012, 38: 314-323.
28 Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092.
29 Tang R L, Dai Q B, Liang W W, et al. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas[J]. Chemical Engineering Journal, 2020, 384: 123388.
30 Breck D W. Zeolite Molecular Sieves[M]. New York: Wiley, 1974: 634.
31 Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477.
32 Zhang Y F, Xiao H Y, Zhou X, et al. Selective adsorption performances of UiO-67 for separation of light hydrocarbons C1, C2, and C3[J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8689-8696.
33 Bao Z B, Alnemrat S, Yu L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework[J]. Langmuir, 2011, 27(22): 13554-13562.
34 Bachman J E, Kapelewski M T, Reed D A, et al. M2(m-dobdc) (M=Mn, Fe, Co, Ni) metal-organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations[J]. Journal of the American Chemical Society, 2017, 139(43): 15363-15370.
[1] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[2] 宋健斐, 孙立强, 解明, 魏耀东. 旋风分离器内气相旋转流不稳定性的实验研究[J]. 化工学报, 2022, 73(7): 2858-2864.
[3] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[4] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[5] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[6] 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077.
[7] 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286.
[8] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[9] 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
[10] 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907.
[11] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[12] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[13] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[14] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[15] 李春晖, 何辉, 何明键, 张萌, 高杨, 矫彩山. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(4): 1606-1614.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!