化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4768-4774.DOI: 10.11949/0438-1157.20210125
温怡静1(),张博1,陈晓霏1,赵思洋1,周欣1(
),黄艳1,2(
),李忠1
收稿日期:
2021-01-19
修回日期:
2021-03-24
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
周欣,黄艳
作者简介:
温怡静(1998—),女,硕士研究生,基金资助:
Yijing WEN1(),Bo ZHANG1,Xiaofei CHEN1,Siyang ZHAO1,Xin ZHOU1(
),Yan HUANG1,2(
),Zhong LI1
Received:
2021-01-19
Revised:
2021-03-24
Online:
2021-09-05
Published:
2021-09-05
Contact:
Xin ZHOU,Yan HUANG
摘要:
烯烃是重要的化工原料,吸附分离技术可在温和工况下实现烯烃纯化,而吸附剂的烷烃选择性是实现高效化工分离过程的关键。基于分子模拟,提出调节孔道尺寸以控制多孔炭优先吸附乙烯或乙烷的选择性反转机制;控制活化条件,实验制备出不同孔径的多孔炭材料并验证了乙烯-乙烷选择性反转规律。结果表明,多孔炭的石墨化表面优先吸附乙烷;随着孔径尺寸的增大,可出现优先吸附乙烯的孔道区间;若孔径进一步增大,多孔炭可回归到优先吸附乙烷的石墨化表面吸附特征。选择性反转机制适用于不同形状的孔道结构。因此,可利用微孔孔道的限域作用放大多孔炭表面的烷烃选择性,并得到高性能的烷烃选择性吸附剂。
中图分类号:
温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
Yijing WEN, Bo ZHANG, Xiaofei CHEN, Siyang ZHAO, Xin ZHOU, Yan HUANG, Zhong LI. Selectivity reversion mechanism of porous carbon for ethane-ethylene separation[J]. CIESC Journal, 2021, 72(9): 4768-4774.
图1 石墨化碳层模型C510H62 (a);狭缝孔模型C510H62×2(b) ;孔径示意图(灰色球代表碳原子,白色球代表氢原子)(c)
Fig.1 Molecular models of graphitic carbon layer C510H62(a); Slit pore C510H62×2 (b); Schematic diagram of aperture (Gray and white balls represent carbon and hydrogen atoms, respectively)(c)
吸附质 | 动力学直径[ | 最小分子笼尺寸 | ||
---|---|---|---|---|
x/? | y/? | z/? | ||
乙烯 | 4.16 | 5.09 | 4.35 | 3.98 |
乙烷 | 4.44 | 5.11 | 4.34 | 4.58 |
表1 乙烯和乙烷的分子动力学直径和最小分子笼的尺寸
Table 1 Kinetic diameter and molecular cage size of ethylene and ethane
吸附质 | 动力学直径[ | 最小分子笼尺寸 | ||
---|---|---|---|---|
x/? | y/? | z/? | ||
乙烯 | 4.16 | 5.09 | 4.35 | 3.98 |
乙烷 | 4.44 | 5.11 | 4.34 | 4.58 |
图3 碳层表面对乙烯、乙烷的放热吸附焓(a);乙烯(b)和乙烷(c)在碳层表面的吸附构型
Fig.3 Exothermic adsorption enthalpies of ethylene, ethane on the surface of graphitic carbon(a); Adsorption configuration of ethylene(b) and ethane (c) on the surface of graphitic carbon
图4 乙烯和乙烷的放热吸附焓随孔道尺寸变化的规律(a);发生选择性反转时乙烯(b)和乙烷(c)在孔道中的吸附构型
Fig.4 Exothermic adsorption enthalpies of ethylene and ethane changes with the size of slit pore(a); The adsorption configuration of ethylene (b) and ethane(c) in the pore when selectivity reversion occurs
图5 两种多孔炭常温下的乙烯和乙烷等温线(a);平均孔径(b)
Fig.5 Ethylene and ethane isotherms at room temperature(a), average pore diameter (b) of two kinds of carbon materials
1 | Lin R B, Wu H, Li L B, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(40): 12940-12946. |
2 | Yang L F, Cui X L, Ding Q, et al. Polycatenated molecular cage-based propane trap for propylene purification with recorded selectivity[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2525-2530. |
3 | Ren T, Patel M, Blok K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes[J]. Energy, 2006, 31(4): 425-451. |
4 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
5 | 陈润道, 郑芳, 郭立东, 等. 稀有气体Xe/Kr吸附分离研究进展[J]. 化工学报, 2021, 72(1): 14-26. |
Chen R D, Zheng F, Guo L D, et al. Advancements in adsorption separation of Xe/Kr noble gases[J]. CIESC Journal, 2021, 72(1): 14-26. | |
6 | 陈邦林. 反转吸附选择性可助金属有机框架纯化烯烃[J]. 化学进展, 2017, 29(8): 811-813. |
Chen B L. Reversing adsorption selectivity helps MOFs purifying alkenes[J]. Progress in Chemistry, 2017, 29(8): 811-813. | |
7 | Li L B, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. |
8 | 刘普旭, 贺朝辉, 李立博, 等. 高稳定双金属MOF材料用于低浓度乙烷的高效分离[J]. 化工学报, 2020, 71(9): 4211-4218. |
Liu P X, He C H, Li L B, et al. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation[J]. CIESC Journal, 2020, 71(9): 4211-4218. | |
9 | Tang Y N, Wang S, Zhou X, et al. Room temperature synthesis of Cu(Qc)2 and its application for ethane capture from light hydrocarbons[J]. Chemical Engineering Science, 2020, 213: 115355. |
10 | Wang S, Zhang Y F, Tang Y N, et al. Propane-selective design of zirconium-based MOFs for propylene purification[J]. Chemical Engineering Science, 2020, 219: 115604. |
11 | Solanki V A, Borah B. In-silico identification of adsorbent for separation of ethane/ethylene mixture[J]. Journal of Molecular Modeling, 2020, 26(12): 1-16. |
12 | He C H, Wang Y, Chen Y, et al. Microregulation of pore channels in covalent-organic frameworks used for the selective and efficient separation of ethane[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52819-52825. |
13 | Ding Q, Zhang Z, Yu C, et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework[J]. Science Advances, 2020, 6(15): eaaz4322. |
14 | Wang X J, Wu Y, Zhou X, et al. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene[J]. Chemical Engineering Science, 2016, 155: 338-347. |
15 | Ma C, Wang X J, Wang X, et al. Novel glucose-based adsorbents (Glc-As) with preferential adsorption of ethane over ethylene and high capacity[J]. Chemical Engineering Science, 2017, 172: 612-621. |
16 | Liang W W, Wu Y, Xiao H Y, et al. Ethane-selective carbon composites CPDA@A-ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity[J]. AIChE Journal, 2018, 64(9): 3390-3399. |
17 | Liang W W, Xiao H Y, Lv D, et al. Novel asphalt-based carbon adsorbents with super-high adsorption capacity and excellent selectivity for separation for light hydrocarbons[J]. Separation and Purification Technology, 2018, 190: 60-67. |
18 | Liang W W, Liu Z W, Peng J J, et al. Enhanced CO2 adsorption and CO2/N2/CH4 selectivity of novel carbon composites CPDA@A-Cs[J]. Energy & Fuels, 2019, 33(1): 493-502. |
19 | Saha D, Toof B, Krishna R, et al. Separation of ethane-ethylene and propane-propylene by Ag(Ⅰ) doped and sulfurized microporous carbon[J]. Microporous and Mesoporous Materials, 2020, 299: 110099. |
20 | Wang X J, Wu Y, Peng J J, et al. Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4[J]. Chemical Engineering Journal, 2019, 358: 1114-1125. |
21 | Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035. |
22 | Rappe A K, Goddard W A. Charge equilibration for molecular dynamics simulations[J]. The Journal of Physical Chemistry, 1991, 95(8): 3358-3363. |
23 | Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170. |
24 | Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305. |
25 | Mehio N, Dai S, Jiang D E. Quantum mechanical basis for kinetic diameters of small gaseous molecules[J]. The Journal of Physical Chemistry A, 2014, 118(6): 1150-1154. |
26 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
27 | Lu T, Chen F W. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. Journal of Molecular Graphics and Modelling, 2012, 38: 314-323. |
28 | Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092. |
29 | Tang R L, Dai Q B, Liang W W, et al. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas[J]. Chemical Engineering Journal, 2020, 384: 123388. |
30 | Breck D W. Zeolite Molecular Sieves[M]. New York: Wiley, 1974: 634. |
31 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477. |
32 | Zhang Y F, Xiao H Y, Zhou X, et al. Selective adsorption performances of UiO-67 for separation of light hydrocarbons C1, C2, and C3[J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8689-8696. |
33 | Bao Z B, Alnemrat S, Yu L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework[J]. Langmuir, 2011, 27(22): 13554-13562. |
34 | Bachman J E, Kapelewski M T, Reed D A, et al. M2(m-dobdc) (M=Mn, Fe, Co, Ni) metal-organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations[J]. Journal of the American Chemical Society, 2017, 139(43): 15363-15370. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[6] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[7] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[10] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 496
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||